995 research outputs found

    Sputtering yield measurements at glancing incidence using a quartz crystal microbalance

    Get PDF
    Low energy sputtering yields at grazing incidence have been investigated experimentally using a quartz crystal microbalance (QCM) technique. This method involved precoating the QCM with a thin film of the desired target material and relating the resonance frequency shift directly to mass loss during ion bombardment. A highly focused, low divergence ion beam provided a well defined incidence angle. Focusing most of the ion current on the center of the target allowed for higher sensitivity by taking into account the radial mass sensitivity of the QCM. Measurements of Mo, Cu, and W sputtering yields were taken for low energy (80–1000 eV) Xe+ and Ar+ to validate this experimental method. The target films ranged from 3.5 to 8.0 µm in thickness and were deposited so that their crystal structure and density would match those of the bulk material as closely as possible. These properties were characterized using a combination of scanning electron microscope imagery, profilometry, and x-ray diffraction. At normal incidence, the sputtering yields demonstrated satisfactory agreement with previously published work. At angles of incidence up to 40° off normal, the data agreed well with predictions from existing theoretical models. Sputtering yields were found to increase by a factor of 1.6 over this range. The optimum angle for sputtering occurred at 55°, after which the yields rapidly decreased. Measurements were taken up to 80° from the surface normal

    Oxygen-propellant plasma thrusters for cis-lunar electric propulsion missions

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76753/1/AIAA-1998-3994-519.pd

    Field emission array cathodes for electric propulsion systems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76532/1/AIAA-1998-3484-490.pd

    Traditional Cardiovascular Risk Factors as Predictors of Cardiovascular Events in the U.S. Astronaut Corps

    Get PDF
    Risk prediction equations from the Framingham Heart Study are commonly used to predict the absolute risk of myocardial infarction (MI) and coronary heart disease (CHD) related death. Predicting CHD-related events in the U.S. astronaut corps presents a monumental challenge, both because astronauts tend to live healthier lifestyles and because of the unique cardiovascular stressors associated with being trained for and participating in space flight. Traditional risk factors may not hold enough predictive power to provide a useful indicator of CHD risk in this unique population. It is important to be able to identify individuals who are at higher risk for CHD-related events so that appropriate preventive care can be provided. This is of special importance when planning long duration missions since the ability to provide advanced cardiac care and perform medical evacuation is limited. The medical regimen of the astronauts follows a strict set of clinical practice guidelines in an effort to ensure the best care. The purpose of this study was to evaluate the utility of the Framingham risk score (FRS), low-density lipoprotein (LDL) and high-density lipoprotein levels, blood pressure, and resting pulse as predictors of CHD-related death and MI in the astronaut corps, using Cox regression. Of these factors, only two, LDL and pulse at selection, were predictive of CHD events (HR(95% CI)=1.12 (1.00-1.25) and HR(95% CI)=1.70 (1.05-2.75) for every 5-unit increase in LDL and pulse, respectively). Since traditional CHD risk factors may lack the specificity to predict such outcomes in astronauts, the development of a new predictive model, using additional measures such as electron-beam computed tomography and carotid intima-media thickness ultrasound, is planned for the future

    Noninvasive Techniques for Intracranial Pressure Assessment: A Review from Aerospace Medicine Perspective

    Get PDF
    Microgravity-induced changes in fluid distribution and other physiological factors due to space flight have been implicated as the cause of increased intracranial pressure (ICP) in a number of space crewmembers. The modest levels of ICP elevation and absence of severe symptoms in this group do not warrant invasive diagnostic interventions. However, the long-term trends and residual or consequential changes secondary to the observed ICP elevation in this group are not yet known. Therefore, close attention is needed to evaluate the potential techniques of noninvasively assessing ICP, including those feasible for in-flight use. Of particular interest is continuity between ground and in-flight testing, whereby data from the same or different techniques allow reasonably dependable estimation of ICP trends and responses. Methods: A thorough review of current literature, analysis of NASA data, and interviews with subject matter experts were conducted to construct a presentation that reflects the state of the art for noninvasive ICP measurement and monitoring. Results: Multiple imaging and non-imaging modalities are available to assess ICP in terrestrial clinical and experimental environments. Imaging alternatives include magnetic resonance imaging (MRI) and high-resolution sonography. Non-imaging techniques include transcranial Doppler, certain audiological methods, and venous ophthalmodynamometry, among others. Special functional techniques have been proposed recently that allow the use of advanced MRI methods to calculate ICP in addition to the acquisition of high-resolution images. Our data include many of these applications, with several cases of correlation with lumbar puncture, the invasive "gold standard" measurement of ICP

    Exercise-Induced Bone Formation Is Poorly Linked to Local Strain Magnitude in the Sheep Tibia

    Get PDF
    Functional interpretations of limb bone structure frequently assume that diaphyses adjust their shape by adding bone primarily across the plane in which they are habitually loaded in order to minimize loading-induced strains. Here, to test this hypothesis, we characterize the in vivo strain environment of the sheep tibial midshaft during treadmill exercise and examine whether this activity promotes bone formation disproportionately in the direction of loading in diaphyseal regions that experience the highest strains. It is shown that during treadmill exercise, sheep tibiae were bent in an anteroposterior direction, generating maximal tensile and compressive strains on the anterior and posterior shaft surfaces, respectively. Exercise led to significantly increased periosteal bone formation; however, rather than being biased toward areas of maximal strains across the anteroposterior axis, exercise-related osteogenesis occurred primarily around the medial half of the shaft circumference, in both high and low strain regions. Overall, the results of this study demonstrate that loading-induced bone growth is not closely linked to local strain magnitude in every instance. Therefore, caution is necessary when bone shaft shape is used to infer functional loading history in the absence of in vivo data on how bones are loaded and how they actually respond to loading

    Imaging Modalities Relevant to Intracranial Pressure Assessment in Astronauts: A Case-Based Discussion

    Get PDF
    Introduction: Intracranial pressure (ICP) elevation has been inferred or documented in a number of space crewmembers. Recent advances in noninvasive imaging technology offer new possibilities for ICP assessment. Most International Space Station (ISS) partner agencies have adopted a battery of occupational health monitoring tests including magnetic resonance imaging (MRI) pre- and postflight, and high-resolution sonography of the orbital structures in all mission phases including during flight. We hypothesize that joint consideration of data from the two techniques has the potential to improve quality and continuity of crewmember monitoring and care. Methods: Specially designed MRI and sonographic protocols were used to image eyes and optic nerves (ON) including the meningeal sheaths. Specific crewmembers multi-modality imaging data were analyzed to identify points of mutual validation as well as unique features of complementary nature. Results and Conclusion: Magnetic resonance imaging (MRI) and high-resolution sonography are both tomographic methods, however images obtained by the two modalities are based on different physical phenomena and use different acquisition principles. Consideration of the images acquired by these two modalities allows cross-validating findings related to the volume and fluid content of the ON subarachnoid space, shape of the globe, and other anatomical features of the orbit. Each of the imaging modalities also has unique advantages, making them complementary techniques

    Telescoping Solar Array Concept for Achieving High Packaging Efficiency

    Get PDF
    Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared
    • …
    corecore