1,595 research outputs found
Assembly of Effective Halide Receptors from Components. Comparing Hydrogen, Halogen, Tetrel Bonds
Receptors for halide anions are constructed based on the imidazolium unit, and then replacing the H-bonding C-H group firstby halogen-bonding C-I and then by tetrel-bonding C-SnH3 and C-SiF3.Attaching a phenyl ring to any of these species has little effect on its ability to bind a halide, but incorporation of a second imidazolium to the benzene connector, forming a bidentate dicationic receptor, greatly enhances the binding. Addition of electron-withdrawing F atoms to each imidazolium adds a further increment. F- consistently binds more strongly to the various receptor models than does Cl-. Whereas replacement of the H atom on the imidazolium groups with the halogen-bonding I has an inconsistent perturbing effect, tetrel-bonding SnH3 significantly enhances the binding with either halide, and SiF3 even more so. Placement of the various complexes into aqueous solution reduces binding energies, but the trends that occur in the gas phase are largely reproduced in water. The tetrel-bonding receptors are the most selective for F- over Cl-, with an equilibrium ratio on the order of 1014 for SnH3 and1028 for SiF3. When combined with their strong halide binding, SiF3-ImF3-Bz-ImF3-SiF3+2 bipodal receptors represent an optimal choice in terms of both binding strength and selectivity
Recommended from our members
Development of a tokamak plasma optimized for stability and confinement
Design of an economically attractive tokamak fusion reactor depends on producing steady-state plasma operation with simultaneous high energy density ({beta}) and high energy confinement ({tau}{sub E}); either of these, by itself, is insufficient. In operation of the DIII-D tokamak, both high confinement enhancement (H{equivalent_to} {tau}{sub E}/{tau}{sub ITER-89P} = 4) and high normalized {beta} ({beta}{sub N}{equivalent_to} {beta}/(I/aB) = 6%-m-T/MA) have been obtained. For the present, these conditions have been produced separately and in transient discharges. The DIII-D advanced tokamak development program is directed toward developing an understanding of the characteristics which lead to high stability and confinement, and to use that understanding to demonstrate stationary, high performance operation through active control of the plasma shape and profiles. The authors have identified some of the features of the operating modes in DIII-D that contribute to better performance. These are control of the plasma shape, control of both bulk plasma rotation and shear in the rotation and Er profiles, and particularly control of the toroidal current profiles. In order to guide their future experiments, they are developing optimized scenarios based on their anticipated plasma control capabilities, particularly using fast wave current drive (on-axis) and electron cyclotron current drive (off-axis). The most highly developed model is the second-stable core VH-mode, which has a reversed magnetic shear safety factor profile [q(O) = 3.9, q{sub min} = 2.6, and q{sub 95} = 6]. This model plasma uses profiles which the authors expect to be realizable. At {beta}{sub N} {>=} 6, it is stable to n=l kink modes and ideal ballooning modes, and is expected to reach H {>=} 3 with VH-mode-like confinement
Path Integrals, Density Matrices, and Information Flow with Closed Timelike Curves
Two formulations of quantum mechanics, inequivalent in the presence of closed
timelike curves, are studied in the context of a soluable system. It
illustrates how quantum field nonlinearities lead to a breakdown of unitarity,
causality, and superposition using a path integral. Deutsch's density matrix
approach is causal but typically destroys coherence. For each of these
formulations I demonstrate that there are yet further alternatives in
prescribing the handling of information flow (inequivalent to previous
analyses) that have implications for any system in which unitarity or coherence
are not preserved.Comment: 25 pages, phyzzx, CALT-68-188
Higher Order Corrections at Zero Recoil
The general structure of the corrections at zero recoil is studied. The
relevant matrix elements are forward matrix elements of local higher
dimensional operators and their time ordered products with higher order terms
from the Lagrangian. These matrix elements may be classified in a simple way
and the analysis at the non recoil point for the form factor of heavy quark
currents simplifies drastically. The second order recoil corrections to the
form factor of the axial vector current, relevant for the
determination from decays, are estimated to be .Comment: LaTeX, 25 pages, one figure, appended after \end{document} as
uu-encoded and compressed eps file, uses epsf, CERN-TH.7162/9
Isospin Multiplet Structure in Ultra--Heavy Fermion Bound States
The coupled Bethe--Salpeter bound state equations for a system,
where is a degenerate, fourth generation, super--heavy quark doublet,
are solved in several ladder approximation models. The exchanges of gluon,
Higgs and Goldstone modes in the standard model are calculated in the
ultra--heavy quark limit where weak and contributions are
negligible. A natural and multiplet pattern is found, with large
splittings occuring between the different weak iso--spin states when , the
quark masses, are larger than values in the range ,
depending on which model is used. Consideration of ultra--heavy quark lifetime
constraints and mass splitting constraints are reviewed to establish the
plausibility of lifetime and mass degeneracy requirements assumed for this
paper.Comment: 20 pages, 7 figures (hard copy available upon request), report#
KU-HEP-93-2
Unitarity of Quantum Theory and Closed Time-Like Curves
Interacting quantum fields on spacetimes containing regions of closed
timelike curves (CTCs) are subject to a non-unitary evolution . Recently, a
prescription has been proposed, which restores unitarity of the evolution by
modifying the inner product on the final Hilbert space. We give a rigorous
description of this proposal and note an operational problem which arises when
one considers the composition of two or more non-unitary evolutions. We propose
an alternative method by which unitarity of the evolution may be regained, by
extending to a unitary evolution on a larger (possibly indefinite) inner
product space. The proposal removes the ambiguity noted by Jacobson in
assigning expectation values to observables localised in regions spacelike
separated from the CTC region. We comment on the physical significance of the
possible indefiniteness of the inner product introduced in our proposal.Comment: 13 pages, LaTeX. Final revised paper to be published in Phys Rev D.
Some changes are made to expand our discussion of Anderson's Proposal for
restoring unitarit
QCD Factorization for Decays: Strong Phases and CP Violation in the Heavy Quark Limit
We show that, in the heavy quark limit, the hadronic matrix elements that
enter meson decays into two light mesons can be computed from first
principles, including `non-factorizable' strong interaction corrections, and
expressed in terms of form factors and meson light-cone distribution
amplitudes. The conventional factorization result follows in the limit when
both power corrections in and radiative corrections in are
neglected. We compute the order- corrections to the decays
, and in the heavy
quark limit and briefly discuss the phenomenological implications for the
branching ratios, strong phases and CP violation.Comment: 6 pages, 1 figur
In search of multipolar order on the Penrose tiling
Based on Monte Carlo calculations, multipolar ordering on the Penrose tiling,
relevant for two-dimensional molecular adsorbates on quasicrystalline surfaces
and for nanomagnetic arrays, has been analyzed. These initial investigations
are restricted to multipolar rotors of rank one through four - described by
spherical harmonics Ylm with l=1...4 and restricted to m=0 - positioned on the
vertices of the rhombic Penrose tiling. At first sight, the ground states of
odd-parity multipoles seem to exhibit long-range multipolar order, indicated by
the appearance of a superstructure in the form of the decagonal
Hexagon-Boat-Star tiling, in agreement with previous investigations of dipolar
systems. Yet careful analysis establishes that long-range multipolar order is
absent in all cases investigated here, and only short-range order exists. This
result should be taken as a warning for any future analysis of order in either
real or simulated arrangements of multipoles on quasiperiodic templates
A Bjorken sum rule for semileptonic decays to ground and excited charmed baryon states
We derive a Bjorken sum rule for semileptonic decays to ground and
low-lying negative-parity excited charmed baryon states, in the heavy quark
limit. We discuss the restriction from this sum rule on form factors and
compare it with some models.Comment: 10 pages, RevTex, no figure, Alberta Thy--26--9
- …