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Abstract

A class of low-# stellarator MHD equilibria with - (a/Ro)2 is introduced and the corresponding

toroidal shift is calculated. It is shown that an apparent paradox exists with regard to the problem of position

control in that a vertical field is capable of shifting vacuum flux surfaces, but produces no net body force on

a current free stellarator. This paradox is resolved by an analysis of the transient response of the plasma and

demonstrates how the vertical field can be used as a means of position control.
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. Introduction and Statement of the Problem

In this paper we investigate a class of toroidal magnetohydrodynamic equilibria of stellarators. We wish

to obtain a better physical understanding of toroidal force balance and the corresponding toroidal shift, thus

enabling us to address the problem of position control in a stellarator by means of a vertical field. However, the

following two facts - (1) a vertical field shifts vacuum flux surfaces, and (2) a vertical field produces no net body

force on a stellarator with zero net current - clearly indicate that in a stellarator one is confronted with the even

more basic question, namely, can a vertical field be used at all for position control in a stellarator?

This somehow apparently paradoxical situation wherein the vertical field shifts the magnetic surfaces but

produces no net force is manifested in the very fundamental difference in the operation of a tokamak and a

stellarator. In a tokamak, the control of plasma position poses no conceptual difficulty. With the application

of a vertical field a toroidal force (i.e., along the major radius) is generated due to the permanent presence of

a toroidal current. Of course there is a question of a response to transients which arise during the buildup

of the vertical field, but this is a minor problem, especially when the evolution of the vertical field is slow in

comparison to the inertial response of the plasma. The resulting end product is a new equilibrium with shifted

magnetic surfaces calculated using the well-known formula due to Shafranov.'

In a stellarator no static toroidal force (due to the vertical field) is possible. Thus a change in the toroidal

shift may only be produced by a dynamic action; in particular as a response to the buildup or decay of the

vertical field. Clearly, once the transients are over, the vertical field no longer produces a body force and the

plasma comes to a "new" resting position. This end state evolves adiabatically from the initial one, implying

that in principle the net shift in plasma position can be determined from a static ideal theory without actually

knowing or taking into consideration the dynamical mechanism which connected two static states.

Nevertheless, one has to be concerned with the dynamics in order to ensure that indeed there exists a

physical process capable of transforming one static state into another. The dynamics needed to accomplish this

are as follows.

(1) In a static equilibrium the vertical field as previously stated does not produce a net toroidal body force

on the plasma. The outward expansion force due to the 1/R dependence of B0 is balanced by the J X B force

generated by the interaction of the Pfirsch-Schluter currents with the average poloidal helical magnetic field on

the plasma surface, ((B,,) - Z avcrages to zero in leading order but is non-zero in next order, and Z11 is the

helical transform /21r.) (2) When the vertical field is varied in time (as it would be for position control) the

plasma, because of inertial effects, remains initially at rest. Within the context of ideal M I ia toroidal surface

dipole current is induced instantaneously in order to conserve the flux in the plasma. (An additional net toroidal



surf~ace current may or may not be induced depending on the circuits controlling the poloidal flux linked by

the plasma). The induced dipole current interacts with the average poloidal field producing a body force on the

plasma. The direction of this force is such that as the plasma moves, a counter surface dipole current is induced.

An equilibrium is achieved when the plasma moves to a new major radius where the net surface dipole current

vanishes. Consequently, the vertical field gives rise to a body force on the plasma only during transient periods

when the dipole current is induced. This force persists as long as transients exist. As mentioned previously, the

time scale associated with the vertical field evolution is much longer than the plasma inertial time scale, so that

the plasma position essentially tracks the vertical field almost adiabatically.

Using a mechanical analogy, we may compare tokamaks and stellarators as follows. In a tokamak the

vertical field acts like a (magnetic) piston pushing with a constant force against a spring with a balance achieved

after the reacting spring's force counteracts the piston. In a stellarator the same piston is activated "impulsively"

with a certain energy deposited but a varying force exerted by the piston. If this deposit is very short in duration

as compared with the inertial response, the motion is indeed impulsively initiated. If, on the other hand, as is

the case in practice, the energy deposit is slow, the spring is pushed by a series of weak impulses and the motion

proceeds as a sequence of "quasi-static" steps.

Returning to our main goal, we note first that while from the physical point of view the actual calculation

of plasma shift is a minor point, in practicality it constitutes the main calculative thrust of the problem and of

this paper as well. Our approach which is essentially analytical, is described in some detail in the next section.

For the benefit of the reader interested only in the final result, we provide the following summary.

The MHD equations are solved using a low-#8 (i.e., 0 = (a/Ro)2 = f2) variant of the Princeton stel-

larator expansion 2 where # ~ (a/Ro) was assumed. This assumption spreads the expansion over many orders

but leads to an entirely analytic theory in which simple relations are derived for the toroidal shift and the

toroidal force balance as functions of the vertical field, helical sideband fields and, if included, ohmic current as

well. One recalls that treating # ~ (a/Ro)2 is equivalent to the low-3 tokamak expansion and indeed, in the

limit of zero helical fields our results give the Shafranov shift1 for a tokamak. It is a useful feature of our theory

that it can describe both a pure tokamak, a pure stellarator, and hybrid configurations as well.

After lengthy but manageable calculations we derive a set of equations for the toroidally symmetric com-

ponent of vector potential, A i(r, 0) = A(r) cos 0 and the toroidal shift a(r) 3p(r)/#'o(r) where 3(if) P

A)(r) +,3i (r) cos . 'ihe general form of the equations is valid for arbitrary ohmic heating profiles and finite eN

with N the number of helical periods and e = a/Ru the plasma inverse aspect ratio. For the case of a current

free stellarator and small eN these equations can be solved analytically, yielding
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A r b df d y (1)=~b +f JfJU~Y

a(a) _ 't

a t e 22u(a) [o--2 d be+, + b, 1 + br , (2)

where BO is the toroidal field, t.1/, as before, is the helical transform /27r, N is the number of helical periods,

z = r/a is the normalized radius, and b, = B(V)(a)/Bo, be = B()(a)/Bo, and be+i = B(,'L)(a)/Bo are the

normalized amplitudes of the applied vertical field, main helical field and helical sideband fields respectively.

In passing we note that while Eq. (2) for the shift is model dependent, the concepts leading to it are not.
This is to imply that while in practical situations one may have to calculate the actual shift numerically (as is
usually the case with Grad-Shafranov equation)3 ' or by using a different perturbational scheme, the arguments

presented assure the possibility of a transit from one stable stage to another.
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II. Stellarator Equilibria and the Corresponding Toroidal Shift

We consider the equilibrium of a diffuse toroidal stellarator as described by the ideal magnetohydrodynamic

model

Jx B= Vp

J= V X B (3)

V.B==O

A. Assumptions

As mentioned in Sec. I, the calculation is carried out using a low / modification of the well-known stel-

larator expansion introduced by Greene and Johnson. 2 In the present variant, f is assumed one order smaller

in inverse aspect ratio, e = a/Ro, than in the original expansion; that is, ft = e2 rather than 0 = e. This has

several important consequences:

1. The physics of the modified expansion is such that a stellarator is treated comparably to a conventional

tokamak, = e 2 (as opposed to a high # tokamak, # = e, in the original expansion).

2. In the modified expansion the flux surfaces are nearly circular with small helical and toroidal shifts. (The

toroidal shift is of order unity in the original expansion).

3. Because of the small shifts it is possible to analytically calculate the equilibrium fields and the correspond-

ing "Shafranov" shift.' (In the original expansion one must solve a two dimensional "Grad Shafranov"

partial differential equation to obtain the equilibrium fields).

4. Because of the small shifts, the expansion, expressed in terms of the helical field amplitude, 6 C e 2, is

spread out over many orders. In fact, parts of the calculation must be carried out to sixth order to satisfy

the parallel current constraint) associated with guaranteeing V - J = 0.

5. The calculation is carried out for arbitraryhelical multipolarity, e, but difficulties arise near the magnetic

axis for I > 3 where the shifts can be finite. (No such difficulty occurs in the original expansion).
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6. A comparison of the results of the modified expansion with the low P limit of the original expansion

indicates that many terms are common, but that each expansion also contains effects not included in the

other.

The analysis is carried out in toroidal coordinates (r, 0, z) which are related to the usual cylindrical coor-

dinates (R, 0, Z) as follows

R = Ro + r cos0

Z = rsin B (4)

4 = -z/Ro,

where RO is the major radius to the magnetic axis of the vacuum helical magnetic field. The geometry is

illustrated in Fig. 1.

The appropriate expansion for the field variables is given in terms of the ordering parameter 8e, charac-

terizing the amplitude of helical fields.

B = Boe, + B,(r, a) + B2(r, 0) + [Bi(r, a + 0) + 3(r, a)]...

J = J2(r) + J3(r, a) + 1 4(r, ) +J 4(r, 2a)]... (5)

p = p4(r) + pA(r, a) + [p6(r, B) + P6(r, 2a)] ...

where a = e+ ± hz, e is the helical multipolarity of the stellarator field, and 27r/h is the length of a single

helical period. The subscripts on each expansion quantity represent the corresponding ordering in 8e: B, ~ 6".

The motivation for choosing the functional dependencies of B, J, and p given by Fq.(5) will become

apparent shortly. At this point it is sufficient to note that Eq.(5) is consistent with the basic physics requirements

of the modified stellarator expansion summarized as follows.

(a) helical period, 21r/h, comparable to the plasma radius, a

ha ~ I

(b) total helical transform, tLU/27r = ll of order unity
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e = a/Ro 62

(c) total ohmic transform, ti/2r 1j of order unity

aJ /B ~ 62

(d) small distortions of the flux surfaces, r = ro + all(ro, a) + aT(ro, 8)...

helical shift: oji/a ~ b

toroidal shift: acT/a ~

(e) small effects distorting the flux surfaces

pressure, p: # = 2p4/BO = 6

vertical field, B,: B,/BO ~

helical sideband fields, 6e±i: ~ 6 .

B. Calculation of Perpendicular Pressure Balance

In what follows we describe order by order the relevant expansion describing perpendicular pressure

balance and the corresponding solution. A critical feature of the solution is the iniroduction of appropriate

homogeneous solutions at certain orders of the expansion which are required to satisfy periodicity constraints

(i.e., the parallel current constraint) appearing in higher order.



1. Zero Order (60)

Zeroth order describes a vacuum toroidal field

B=Boe., Jo=po=0. (6)

2. First Order (61)

First order describes the main vacuum helical field. Here V X B, =0 and V B = 0 yields

Bi BoV40esinaj, J 1 =p1 =0, (7)

with t(r) satisfying

I d rdo, ( 2 +h2\ 0
rdr -- +h2

3. Second Order (b2)

The second order fields describe the basic 1/R correction to the toroidal field and allow a small unidirec-

tional ohmic heating current as would flow in a tokamak. After a straightforward calculation we find

B2 = -rcos0ez + 2(r)ee

J2 = JI(r)e, (8)

P2 = 0,

where J (rB02)'/r can be considered to be a free function.

4. Third Order (53)

Third order describes a number of effects: the coupling of the ohmic current with the helical field;

the application of external helical sideband fields; and the 1/R toroidal correction to the main helical field.

Straightforward analysis yields

-V, - e, + rJji el X V(Oe cos a) + e
L30V IAJ3) Rcos _± V(oecos a)]

J, = J V(Oe sin a) + cos ae (9)h
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P3 = 0,

where ej = (I e, - hreo)/A, ell = (teo + hre,)/A, A = j 2 + h2 r2 . The first two terms in B represent the

coupling of toroidal geometry with the main helical field. The potential, 0,, satisfies

V2 = = [(B r cos 0) - V - (B_ ir cos )] (10)

These terms give rise to helical sideband harmonics (I ± 1)0 + hz. External sideband fields are allowed by

applying source boundary conditions on 0, as r --+ oo.

The last two terms in B3 describe the coupling of the main helical field with the ohmic current and gener-

ate modifications to the basic helical harmonic, M0 + hz. The quantity 0e is a helical flux function satisfying

/- Ot= t (ro)(, . (11)
A r h o

5. Fourth Order (64)

The fourth order fields contain the following contributions: the I/R toroidal corrections to the second

order fields; second harmonic fields caused by the non-linear interaction of the main helical field, BI; pure

transverse dipole fields to satisfy higher order periodicity requirements, and the first appearance of the plasma

pressure, p(r). The second harmonic fieldsfi.e., those proportional to 2(t# + hz)] are not explicitly required in

the higher order constraint equations, and hence, for simplicity, are not included here.

The fourth order fields can be written as

B4 = e. X VAII - (26 + BR r cos0 e.)r 2 + B.4(r)e. + ~4(r, 2a)

v2 (r2B02)' B~
J4 = Al - Cr2 osB. e [+ '+ JI1B02 + BJ i 'Jeo +J(e, 2a) (12)

P4 = p(r).

Here, Al(r,0) is a vector potential, satisfying the homogeneous equations, which gives rise to purely

transverse fields and which is required to satisfy the parallel current constraint. The quantity B 4(r) represents

the diamagnetic response to the plasma pressure p(r). These quantities are related by the one dimensional

radial pressure balance equation

9



(P + BB4)' + (rB2)' + ' = 0. (13)

At this point in the calculation, if one specifies the free functions Jj(r) and p(r), and selects the external

amplitudes of the main helical fields and its sidebands, the solutions are in principle known to fourth order with

the exception of the as yet undetermined vector potential A1 (r, 0).

6. Fifth Order (65)

The fifth order equations are quite complicated. Our task is greatly simplified by noting that we need only

J5 and not B5 or p5 for the parallel current constraint. Furthermore, only those terms in J5 corresponding to

helical sidebands are explicitly required. These terms can be easily found from the fifth order pressure balance

relation

BoJS X eZ+J 4 X Bi +J 3 X B2+J2 X B3 -Vp=0. (14)

Straightforward calculation gives the perpendicular sideband component of Js, denoted by J 5 as

J5= J 1V ; + -LVIA - 2 9co] (15)

The parallel component of Is follows from V - = 0

- -1. (16)

7. Sixth Order (66)

It is in sixth order that the parallel current constraint first becomes non-trivial. This constraint arises when

trying to solve for the sixth order fields in the pressure balance relation

BoJ6 X e, + J X Bi± J4 X B 2 + J3 X B3 + J2 X B4 - Vp = 0. (17)

If we perform the operation e, - V X ( ) on this equation, where ( ) denotes average over one helical

period, then all the explicit sixth order quantities vanish, yielding the constraint

e. - V x (J5 X Bj + 1a X B2 + J X B3 + J2 X B.1) = 0. (18)

Similar relations, which appear in lower orders, are trivially satisfied by symmetry. The constraint equation can

be satisfied only by properly choosing the as yet unspecified homogeneous solution, A11(r, 0). After a lengthy

calculation we obtain
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Av2 ~ t u# r )R~
rL- -- A ) = -btco s 6 - R)

R11 = (e - V (cosa) X + sin co(19)he~ _ o coa)),

where P(r) 2p(r)/B2, Z,(r) = ti/27r is the ohmic transformjj(r) = qj/21r is the helical transform and

Z = £1 + Zi. If an external vertical field is desired, it can be applied by means of the boundary condition on

A1(r, 0) asr - 00.

This equation represents the basic force balance relation for the general stellarator/tokamak hybrid. The

terms driving All can be described as follows: the #' term represents the outward toroidal force caused by the

I/R dependence of the toroidal field; the 1, term represents the outward hoop force associated with the ohmic

current; the J',tRH term represents the force associated with the interaction of the helical field with the ohmic

current; the J'Al term gives rise to a net body force if the externally applied vertical field is non-zero; and the

v2All term represents the net dipole current induced in balancing the forces. Note that the "helical sideband

force", the dominant restoring force in a high # stellarator,6 ,7 8 does not appear in Eq. (19). The reason is that

this force is of order /366I .- 68 and thus would first appear two orders further in our expansion.

C. Calculation of Parallel Pressure Balance

In the previous section we demonstrated the need for a vector potential, Alj(r, 0), in order to solve the sixth

order perpendicular pressure balance equations. In this section we solve the parallel pressure balance relation,

B Vp = 0. The solution to B - Vp = 0 gives the equation for the pressure contours (i.e., the flux surfaces).

Under the assumptions of our expansion, the flux surfaces are circles with small helical and toroidal shifts. It is

of particular interest to calculate the toroidal shift, a, as a function of the applied vertical and helical fields and

the free functions p(r), J11(r). We now describe the order by order expansion of the flux surfaces, starting with

fourth order, the first non-trivial contribution.

I. Fourth Order

The fourth order equation 8o -Vp4 = Bp/Oz = 0 is automatically satisfied if

P= p(r). (20)
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2. Fifth Order

The fifth order contribution describes the helical shift associated with the vacuum fields. A simple calcula-

tion yields

ps = .-jlecosa. (21)

3. Sixth Order

The sixth order contribution to parallel pressure balance has second harmonic helical terms [i.e., %(r, 2a))

plus the toroidal shift term po(r, 0) which appears as a homogeneous solution. As before, the homogeneous

term p6(r, 0) is not determined until higher order and the second harmonic contribution is not explicitly

required. Thus, in sixth order we have

p== pr, 0) + N(r, 2a). (22)

4. Seventh Order

The seventh order pressure is quite complicated. However, in order to calculate p6(r, 0), only the sideband

contribution to p7, denoted by P, is required. A simple calculation yields

9Z P + 2 r cs - i -Vp. (23)

5. Eighth Order

The eighth order parallel pressure balance relation must satisfy a periodicity constraint which determines

po. The basic equation for ps is given by

Bo! + B, . Vp7 + B2 - V6 + B3 - Vps + B4 - Vp = 0. (24)

If we now compute ( ) of this equation, the quantity ps no longer explicitly appears and we are left with the

constraint

(Bi - VP + B2 + Vp + Bi - Vp 5 + B4. Vp) 0. (25)

Substituting into Eq. (25) leads to the functional dependence p(r, 0) = p(r) cos0. Defining the helically

averaged pressure contours as p(r, 0) -= (p), we find p(r, 0) = p(r)+p((r) cos0 . . corresponding to toroidally

shifted circular flux surfaces.

If the equation of a flux surface is written as r = ro+ct(ro) cos 0. - , then the shift a(ro) = -p(r0)/p(r0),

is found to be

12



a(r)cos0 - - R1 (r,A . (26)

[Straightforward calculation shows that both Al (r, 0) and R11(r, 0) are proportional to cos 0.]

The first term in Eq. (26) represents the shift due to the vertical field , the hoop force and the toroidal I/R

effects, while the second term represents the shift due to helical sideband fields.

D. Summary of Equations

For convenience we summarize the basic equations describing arbitrary hybrid stellarator/tokamak equi-

libria. In these equations we assume that p(r) and J11(r) are two specified free functions. Similarly we assume

the vacuum vertical field, B, and externally applied helical fields B, Bi are also specified. Here Be

B,1 (a, a = r/2) is the amplitude of the radial component of helical magnetic field on the zeroth order plasma

surface r = a. Analogous definitions apply for Be+,.

To find an equilibrium first solve

I d d-Oe P2  2\ =
rT - +h 0 = 0

rdr ir + ly

Oe(O) = 0; 0' (a) =Be/Bo (27)

for Oe(r) in terms of modified Bessel functions Ie(hr).

Second, calculate the sideband potential 0,(r, a ± 0) by solving

-2 I & (BIr cos 0) - Vj -(BR1r cos )]

40, ,Z) =0; t'(a, 0, Z) = sin(a + 0) + .e si n(a - ) (28)

where B, =ABVOq sin a.

Knowing Oe(r) and 0,(r, 0, z), solve for the vector potential, A1 (r, 0), from

All - A JO = - 1 Cos 0 - R

R 11 = e- -Vi(#cosa) x ± + -sin0 cos a (29)
h R

.13



B
AlI(0,= 0; All(r = b,) = b cosO.

Here, All All/B) and 11(r) and Z1(r) are related to J11 and Oe as follows

- -(30)

411= -. (32)

Finally, from All the shift a(r) is calculated as follows

a(r) cosG = - [A -RHI. (32)

This completes the formulation of the equilibrium problem.
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Ill. Applications

The calculation of the shift in actual cases has to be carried out numerically. However, there are two

special cases of interest which may be calculated explicitly: (1) the pure tokamak corresponding to zcro applied

helical fields (i.e., Be, Be±i 0) and (2) the pure stellarator corresponding to zero ohmic heating current (i.e.,

J1 = 0).

A. Pure Tokamak

Consider first the case of the pure tokamak. Setting the helical fields to zero in Eq. (29) and letting

A(r,8) = A(r)cos0leadsto

[r ( = + ,r2' + (33)

Upon integrating we find

A(r) r(r) dx y2#'(y) - Y Z2(y)ldy + B (34)
A~~r)1 ~ ~" 1 '~+£(b) Bo

where for simplicity we have assumed a conducting shell located at r = b. The shift, o, is related to A via the

relation o(r) = -RoA(r)/[tj(r)]. If we evaluate the shift of plasma surface, o(a) we arrive at the well known

formula first derived by Shafranov3

b 2R2 b- + In -] (6 (35)

Here, t4 is the internal inductance per unit length and /3, is the volume averaged poloidal #. Note that the

vertical field produces a uniform shift of the flux surfaces. Also, if we integrate the inward restoring force due to

the vacuum vertical field, J X B, . eR over the plasma volume, we obtain the familiar result

F, f J X B, -endr = 2rRoBI (36)

This leads to the intuitive picture of position control in a tokamak, in which the flux surfaces and the

plasma shift simultaneously and adiabatically as the externally applied vertical field is slowly varied. For any

given applied vertical field there is a unique equilibrium position depending upon b/Ro, 0#,, 4 and b/a. In

particular, for a fixed plasma current there is a unique vertical field proportional to 1/Rn which keeps the

plasma centered [i.e., a(a) = 01.
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While this picture is correct in an "adiabatic" sense, it does not provide an accurate description of the

actual dynamics. The crucial point is that the flux surfaces in the vacuum region can change instantaneously

(in the low frequency Maxwell equation model) whereas the plasma itself can only respond on its inertial time

scale. Since the inertial time scale is very short (on the order of microseconds), in most cases of interest it is

sufficient to neglect these transients and to assume that adiabatic evolution is valid. We shall see that in the case

of a pure stellarator, the dynamics play a far more critical role.

B. Pure Stellarator

Consider now the case of a pure stellarator. Setting J1 = 0 leads to the following set of equations for

Ajj(r, ) =A(r) cos 9 and cF(r).

r ( J - (37)

- = [-A -h] (38)

where RH(r, 0) = .AH(r) cosO is given by Eq. (29).

The equation for A can easily be integrated, yielding

A(r) = r O dj (39)

An analytic expression for the shift is obtained by assuming the helical wavelength is long compared to the

plasma radius: ha < 1. In this case

a Be ( r

tit -z(4

h2a2 Bo

at Bf±i (

where, as before, Br, Be4i are the amplitudes of the radial helical magnetic field evaluated on the plasma

surface, r = a.
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From these relations a straightforward calculation leads to the following expression for a(r)

O(r) I f dzf y213' 1 ber(r 2  a(r 2 (- = 41b+H dy bL +k +be i± b (41)Ro s 30 Z" hae a a

where b, = B/Bo, be = Be/Bo and be .1 = B i/B. Two useful limits of this expression correspond to the

surface shift, o(a), given by

b .6-- d,- be+I+b'i+ b, (42)W_ Le~ 2Z o du ha 21?o

and the axis shift, ar(O), which for = 2 is given by

a(0) 1 10(0) bebe_ 1
Ro -; b. 2 Ze ha (43)

Note that the axis shift, a(0), becomes infinite for t > 3 if the vertical field is non zero. This is a consequence

of the "strong" vanishing of helical field on axis fort > 3 leading to a finite shift even though B, is treated as a

small quantity.

There are a number of conclusions to be drawn from these results.

1. The terms appearing in Eq. (41) can be interpreted as follows: The first term represents the flux surface

shift due to the vertical field. The second term represents the outward shift due to the 1/R dependence

of B4 in toroidal geometry. The next two terms represent shifts due to the externally applied helical

sideband fields. The last term represents a small toroidal correction to the cylindrical helical field (i.e., an

a/Ro correction to the modified Bessel function solutions).

2. The problem of position control is quite different in a stellarator than in a tokamak. In the latter case

the vertical field is adjusted to center the last flux surface within the vacuum chamber (or limiter). An

incorrect value of vertical field causes the plasma to drift into the wall. In contrast, the outer surfaces of

a stellarator are essentially held fixed by the external helical coils. These coils are carefully designed so

that the last surface is approximately centered in the vacuum chamber. The problem of position control

in a stellarator thus corresponds to that of moving the center of the plasma, a(0), keeping the last surface

c(a) fixed. Equations (42) and (43) indicate that for t = 2 a combination of an upper helical sideband

and either a vertical field or lower sideband can accomplish this task, although admittedly in an actual

experiment this may be difficult to implement. For t > 3 a vertical field is quite effective for position

control since the axis shift is much larger than the surface shift.

3. Unlike a tokamak, a centered stellarator, o(a) = 0, does not lead to a unique relationship between the

vertical field and the major radius. The reason is associated with the fact that the externally applied helical
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fields define a unique center to the magnetic geometry, even in the absence of plasma currents. The verti-

cal field produces shifts with respect to this center. In a tokamak there is no "magnetic" center without

plasma currents, and the plasma comes to rest at that major radius at which the outward expansion forces

balance the inward B, force. In a stellarator the plasma automatically induces the appropriate toroidal

dipole currents (i.e., Pfirsch-Schluter currents) which produce an inward force to counteract the 1/R

outward expansion force at whatever major radius the helical center and hence the plasma happen to be

located. This inward force represents the interaction of the Pfirsch-Schluter currents with the "average"

helical field on the plasma surface. (Note that to leading order the average helical field is zero, but to next

order there is a non zerocontribution proportional to 1H.)

4. In equilibrium the vertical field produces no net body force on the plasma, although, paradoxically, it

contributes to the toroidal shift. The vanishing of F, follows directly from the'integration of the body

force over the plasma

F. =f J X edr 0 (44)

5. The apparent paradox is resolved as follows. The vertical field produces a force on the plasma only during

transient periods when B,(t) = 0. In fact, it is these transients which are similar to but (incorrectly)

ignored in a tokamak that are critical in the stellarator. To see this assume a stellarator plasma is initially

at rest in an equilibrium position. The vertical field in then suddenly increased from B, to B, + AB,.

The magnetic field changes instantaneously (in the low frequency Maxwell equation model). The plasma,

however, cannot respond faster than its Inertial time scale. Since the plasma is a perfect conductor, the

change in B, can only be accommodated by the induction of a skin current on the plasma surface. This

surface current has a toroidal dipole component (and may or may not have a net toroidal component

depending upon the external circuitry and the net vertical flux linking the torus. For simplicity we assume

the circuits are programmed so that the net toroidal current is instantaneously zero, leaving only the

toroidal dipole current.) It is the interaction of this surface dipole current with the average helical field on

the plasma surface that produces a net body force. The body force exists only during transients and is in a

direction to produce a plasma shift which reduces the surface current.

A simple heuristic model demonstrating this point can be formulated for the more realistic case where

the vertical field changes slowly with respect to the plasma inertial scale. In this case as B,(t) varies, the

plasma shift o(a, t) varies and a surface current is induced whose value can be calculated as follows.

To find the contribution due to the change in B, assume the plasma remains initially at rest. Since the
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plasma is a perfect conductor, there can be no change in the flux in the plasma. Furthermore, since n- B= 0

on the plasma surface the perturbed vector potentials in the vacuum and plasma have the form

6A = eB,(r - a2 /r) cos 6 (vacuum)

6A = 0 (plasma) (45)

where 6B,(t) = B,(t) - B,(O). This gives rise to a surface current

K,(t) = 26BcosOe_ (46)

As the plasma moves in response to the force generated by K,(t), the plasma shift changes by an amount

6a(t) = c(a, t) - o(a, 0) which in turn changes the value of the surface current. This change can be calculated

by noting that the poloidal flux, averaged over one helical period, is given by

-00 = I qh(a)Bhe(a) (47)

If the plasma now undergoes a virtual shift a -4 a + 6a cos 0, the average poloidal flux changes by an amount

(60P) = h(a)Bho(a)I'6acos0 (48)

Since the plasma surface must remain a flux surface during the displacement, a surface current must be induced

to cancel this flux. The perturbed vector potentials giving rise to the shift induced surface current are given by

6A = cos 0 (vacuum)

6A = cr cos 0 (plasma) (49)

The constant c is determined by setting 6A(a, 0) = 6A(a, 0) = -(60,)/21rRo, so that the net average dipole

flux cancels. This leads to a surface current given by

K&(t):= -2Bt - c9s0e. (50)
(Ro)

where we have used the relation (cazD)'= - 2ajpe/Ro.

The two surface current contributions combine and produce a net body force on the plasma which can be

written as
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FI? -a f(K, + K.)Bh cos Odddz (51)

where Bh is to be evaluated on the plasma surface r se a + ah cos a. Upon integrating we find

R - 2ra((K, + K,,) cos )O(Beh) (52)

Here, the subscripts on the ( ) symbols denote the variable over which averaging is carried out. Note that

to leading order (h)z F 0. To first order, however, there is a non zero contribution. A straightforward

calculation shows that

B'ohah at(Bh)z= 2 (53)

Combining terms, we obtain

FR ra2Bgte ( a 6 B.
2~rR R - (54)

Note that the system is in equilibrium, FR = 0, when oa/Ro = 6B,/teBo. Furthermore, the shift that is

induced is identical to that predicted by the general shift relation defining the flux contours, Eq. (42).

The dynamical equations are obtained by equating FR to the inertial force M& with M = 2W2a2Ro(p),

yielding

2

ao RZe Bo

W =LRJ= B 1 p)R (55)

To see how the plasma motion evolves as the vertical field changes, assume the plasma is initially at rest in

equilibrium: 6o(0) = bb(0) = 0. At t = 0, a slowly changing external vertical field is applied of the form

6B.(t) = AB.(1 -et/Th) (56)

The motion of the plasma is easily calculated and is given by

-or + a2 [ + 2 - a 2e-t/t - cos wjt - a sin wa] (57)

where a war.
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ba(t) is illustrated in Fig. 2 for a > 1, the typical experimental situation. Note that 6c-(t) essentially tracks

the applied vertical field 6B,(t) with small superimposed oscillations of relative amplitude - 1/a. A small

dissipation would cause these oscillations to damp. Once the vertical field reaches its final value, the net force on

the plasma, FR, vanishes. The vertical field has produced a force only during the transient period, causing the

plasma to shift to its new equilibrium position, consistent with the flux surface shift relation Eq. (42). Once in

this position the vertical field no longer produces a net body force on the plasma.
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IV. Conclusions

By solving the MHD equations using a low P expansion we have obtained physical insight into the

questions of force balance and position control in tokamaks and stellarators. Specifically, we have resolved

the apparent paradox regarding the use of vertical fields for position control in current free stellarators. The

paradox arose because the vertical field could shift the plasma flux surfaces and yet produce no net body force

on the plasma when in equilibrium. The resolution shows that the vertical field does indeed produce a body

force on the plasma, but only during transient periods when b(t) : 0. This force vanishes when the plasma

comes to its new equilibrium position, given by the vertical field shift of the flux surfaces.
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Figure Captions

Fig. 1 Toroidal Geometry

Fig. 2 Time Evolution of 6B,(t) and ba(t).
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