7 research outputs found

    C–H insertion as a key step to spiro-oxetanes, scaffolds for drug discovery

    Get PDF
    A new route to spiro-oxetanes, potential scaffolds for drug discovery, is described. The route is based on the selective 1,4-C–H insertion reactions of metallocarbenes, generated from simple carbonyl precursors in flow or batch mode, to give spiro-β-lactones that are rapidly converted into spiro-oxetanes. The three-dimensional and lead like-properties of spiro-oxetanes is illustrated by the conversion of the 1-oxa-7-azaspiro[3,5]nonane scaffold into a range of functionalized derivatives

    Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries.</p> <p>Results</p> <p>A synthetic insulin precursor (IP)-encoding gene, codon-optimized for expression in <it>P. pastoris</it>, was cloned in frame with the <it>Saccharomyces cerevisiae </it>α-factor secretory signal and integrated into the genome of <it>P. pastoris </it>strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L<sup>-1</sup>, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant). Using immobilized metal ion affinity chromatography (IMAC) as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth.</p> <p>Conclusions</p> <p>A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using <it>Pichia </it>based expression systems, thus significantly increasing the efficiency of insulin manufacture.</p

    Expression, purification and characterization of SARS-CoV-2 spike RBD in ExpiCHO cells

    No full text
    Reliable diagnosis is critical to identify infections of SARS-CoV-2 as well as to evaluate the immune response to virus and vaccines. Consequently, it becomes crucial the isolation of sensitive antibodies to use as immunocapture elements of diagnostic tools. The final bottleneck to achieve these results is the availability of enough antigen of good quality. We have established a robust pipeline for the production of recombinant, functional SARS-CoV-2 Spike receptor binding domain (RBD) at high yield and low cost in culture flasks. RBD was expressed in transiently transfected ExpiCHO cells at 32 °C and 5% CO(2) and purified up to 40 mg/L. The progressive protein accumulation in the culture medium was monitored with an immunobinding assay in order to identify the optimal collection time. Successively, a two-step chromatographic protocol enabled its selective purification in the monomeric state. RBD quality assessment was positively evaluated by SDS-PAGE, Western Blotting and Mass Spectrometry, while Bio-Layer Interferometry, flow cytometer and ELISA tests confirmed its functionality. This effective protocol for the RBD production in transient eukaryotic system can be immediately extended to the production of RBD mutants

    Inhibitors of Protein Glycosylation Are Active against the Coronavirus Severe Acute Respiratory Syndrome Coronavirus SARS-CoV-2

    No full text
    Repurposing clinically available drugs to treat the new coronavirus disease 2019 (COVID-19) is an urgent need in the course of the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV-2) pandemic, as very few treatment options are available. The iminosugar Miglustat is a well-characterized drug for the treatment of rare genetic lysosome storage diseases, such as Gaucher and Niemann-Pick type C, and has also been described to be active against a variety of enveloped viruses. The activity of Miglustat is here demonstrated in the micromolar range for SARS-CoV-2 in vitro. The drug acts at the post-entry level and leads to a marked decrease of viral proteins and release of infectious viruses. The mechanism resides in the inhibitory activity toward α-glucosidases that are involved in the early stages of glycoprotein N-linked oligosaccharide processing in the endoplasmic reticulum, leading to a marked decrease of the viral Spike protein. Indeed, the antiviral potential of protein glycosylation inhibitors against SARS-CoV-2 is further highlighted by the low-micromolar activity of the investigational drug Celgosivir. These data point to a relevant role of this approach for the treatment of COVID-19
    corecore