170 research outputs found
Harmonic propagation of variability in surface energy balance within a coupled soil-vegetation-atmosphere system
International audienceThe response of a soil-vegetation-atmosphere continuum model to incoming radiation forcing is investigated in order to gain insights into the coupling of soil and atmospheric boundary layer (ABL) states and fluxes. The response is characterized through amplitude and phase propagation of the harmonics in order to differentiate between the response of the system to forcing at different frequencies (daily to hourly to near instantaneous). Stochastic noise is added to the surface energy balance. The amplitude of the noise is maximum at midday when the incoming radiative forcing is also at its peak. The temperatures and turbulent heat fluxes are shown to act as low-pass filters of the incoming radiation or energy budget noise variability at the surface. Conversely, soil heat flux is shown to act as a high-pass filter because of the strong contrast in the soil and air heat capacities and thermal conductivities. As a consequence, heat diffusion formulations that numerically dampen such forcing are potentially incapable of representing rapid fluctuations in soil heat flux (=30 min) and therefore introduce errors in the land-surface energy partitioning. The soil-vegetation-ABL continuum model and an electrical analogy for it are used to explain the frequency-dependent differences in the relative effectiveness of turbulent heat fluxes versus ground heat flux in dissipating noise in radiative forcing. Copyright 2011 by the American Geophysical Union
Effects of Land-Surface-Vegetation on theboreal summer surface climate of a GCM
A land surface model (LSM) has been included in the ECMWF Hamburg version 4 (ECHAM4) atmospheric general circulation model (AGCM). The LSM is an early version of the Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) and it replaces the simple land surface scheme previously included in ECHAM4. The purpose of this paper is to document how a more exhaustive consideration of the land surfaceâvegetation processes affects the simulated boreal summer surface climate.
To investigate the impacts on the simulated climate, different sets of Atmospheric Model Intercomparison Project (AMIP)-type simulations have been performed with ECHAM4 alone and with the AGCM
coupled with ORCHIDEE. Furthermore, to assess the effects of the increase in horizontal resolution the coupling of ECHAM4 with the LSM has been implemented at different horizontal resolutions.
The analysis reveals that the LSM has large effects on the simulated boreal summer surface climate of the atmospheric model. Considerable impacts are found in the surface energy balance due to changes in the surface latent heat fluxes over tropical and midlatitude areas covered with vegetation. Rainfall and atmospheric circulation are substantially affected by these changes. In particular, increased precipitation is found over evergreen and summergreen vegetated areas.
Because of the socioeconomical relevance, particular attention has been devoted to the Indian summer monsoon (ISM) region. The results of this study indicate that precipitation over the Indian subcontinent is better simulated with the coupled ECHAM4âORCHIDEE model compared to the atmospheric model alone
A comprehensive approach to analyze discrepancies between land surface models and in-situ measurements: a case study over the US and Illinois with SECHIBA forced by NLDAS
The purpose of this study is to test the ability of the Land Surface Model SECHIBA to simulate water budget and particularly soil moisture at two different scales: regional and local. The model is forced by NLDAS data set at 1/8th degree resolution over the 1997â1999 period. SECHIBA gives satisfying results in terms of evapotranspiration and runoff over the US compared with four other land surface models, all forced by NLDAS data set for a common time period. The simulated soil moisture is compared to in-situ data from the Global Soil Moisture Database across Illinois by computing a soil wetness index. A comprehensive approach is performed to test the ability of SECHIBA to simulate soil moisture with a gradual change of the vegetation parameters closely related to the experimental conditions. With default values of vegetation parameters, the model overestimates soil moisture, particularly during summer. Sensitivity tests of the model to the change of vegetation parameters show that the roots extraction parameter has the largest impact on soil moisture, other parameters such as LAI, height or soil resistance having a minor impact. Moreover, a new evapotranspiration computation including bare soil evaporation under vegetation has been introduced into the model. The results point out an improvement of the soil moisture simulation when this effect is taken into account. Finally, soil moisture sensitivity to precipitation variation is addressed and it is shown that soil moisture observations can be rather different, depending on the method of measuring field capacity. When the observed field capacity is deducted from the observed volumetric water profiles, simulated soil wetness index is closer to the observations
Characterization of the rainy season in Burkina Faso and it's representation by regional climate models
International audienceWest African monsoon is one of the most challenging climate components to model. Five regional climate models (RCMs) were run over the West African region with two lateral boundary conditions, ERA-Interim re-analysis and simulations from two general circulation models (GCMs). Two sets of daily rainfall data were generated from these boundary conditions. These simulated rainfall data are analyzed here in comparison to daily rainfall data collected over a network of ten synoptic stations in Burkina Faso from 1990 to 2004. The analyses are based on a description of the rainy season throughout a number of it's characteristics. It was found that the two sets of rainfall data produced with the two driving data present significant biases. The RCMs generally produce too frequent low rainfall values (between 0. 1 and 5 mm/day) and too high extreme rainfalls (more than twice the observed values). The high frequency of low rainfall events in the RCMs induces shorter dry spells at the rainfall thresholds of 0. 1-1 mm/day. Altogether, there are large disagreements between the models on the simulate season duration and the annual rainfall amounts but most striking are their differences in representing the distribution of rainfall intensity. It is remarkable that these conclusions are valid whether the RCMs are driven by re-analysis or GCMs. In none of the analyzed rainy season characteristics, a significant improvement of their representation can be found when the RCM is forced by the re-analysis, indicating that these deficiencies are intrinsic to the models. © 2011 The Author(s)
Effects of Land-Surface-Vegetation on the boreal summer surface climate of a GCM
A Land Surface Model (LSM) has been included in the ECHAM4 Atmospheric
General Circulation Model (AGCM). The LSM is an early version
of ORCHIDEE (Organizing Carbon and Hydrology In Dynamic EcosystEms)
and it replaces the simple land surface scheme previously included in
ECHAM4. The purpose of this paper is to document how a more exhaustive
consideration of the land-surface-vegetation processes affects the simulated
boreal summer surface climate.
In order to investigate the impacts on the simulated climate, different sets
of AMIP-type simulations have been performed with Echam4 alone and with
the AGCM coupled with ORCHIDEE. Furthermore, to assess the effects of
the increase in horizontal resolution the coupling of Echam4 with the LSM
has been implemented at different horizontal resolutions.
The analysis reveals that the LSM has large effects on the simulated boreal
summer surface climate of the atmospheric model. Considerable impacts
are found in the surface energy balance due to changes in the surface
latent heat fluxes over tropical and mid-latitude areas covered with vegetation.
Rainfall and atmospheric circulation are substantially affected by these
changes. In particular, increased precipitation is found over evergreen and
summergreen vegetated areas.
Due to the socio-economical relevance, particular attention has been devoted
to the Indian Summer Monsoon (ISM) region. Our results indicate that
precipitation over the Indian subcontinent is better simulated with the coupled
Echam4-ORCHIDEE model compared to the atmospheric model alone
Modelling root water uptake in a complex land surface scheme coupled to a GCM
International audienceThe aim of this paper is to improve the representation of root water uptake in the land surface scheme SECHIBA coupled to the LMD General Circulation Model (GCM). Root water uptake mainly results from the interaction between soil moisture and root profiles. Firstly, one aspect of the soil hydrology in SECHIBA is changed: it is shown that increasing the soil water storage capacity leads to a reduction in the frequency of soil water drought, but enhances the mean evapotranspiration. Secondly, the representation of the soil-vegetation interaction is improved by allowing a different root profile for each type of vegetation. The interaction between sub-grid scale variabilities in soil moisture and vegetation is also studied. The approach consists of allocating a separate soil water column to each vegetation type, thereby 'tiling' the grid square. However, the possibility of choosing the degree of soil moisture spatial heterogeneity is retained. These enhancements of the land surface system are compared within a number of GCM experiments
Recommended from our members
UniFHy v0.1.1: a community modelling framework for the terrestrial water cycle in Python
The land surface, hydrological, and groundwater modelling communities all have expertise in simulating the hydrological processes at play in the terrestrial component of the Earth system. However, these communities, and the wider Earth system modelling community, have largely remained distinct with limited collaboration between disciplines, hindering progress in the representation of hydrological processes in the land component of Earth system models (ESMs). In order to address key societal questions regarding the future availability of water resources and the intensity of extreme events such as floods and droughts in a changing climate, these communities must come together and build on the strengths of one another to produce next-generation land system models that are able to adequately simulate the terrestrial water cycle under change. The development of a common modelling infrastructure can contribute to stimulating cross-fertilisation by structuring and standardising the interactions. This paper presents such an infrastructure, a land system framework, which targets an intermediate level of complexity and constrains interfaces between components (and communities) and, in doing so, aims to facilitate an easier pipeline between the development of (sub-)community models and their integration, both for standalone use and for use in ESMs. This paper first outlines the conceptual design and technical capabilities of the framework; thereafter, its usage and useful characteristics are demonstrated through case studies. The main innovations presented here are (1)Â the interfacing constraints themselves; (2)Â the implementation in Python (the Unified Framework for Hydrology, unifhy); and (3)Â the demonstration of standalone use cases using the framework. The existing framework does not yet meet all our goals, in particular, of directly supporting integration into larger ESMs, so we conclude with the remaining limitations of the current framework and necessary future developments.</p
Temperature Shocks and Economic Growth: Evidence from the Last Half Century
This paper uses historical fluctuations in temperature within countries to identify its effects on aggregate economic outcomes. We find three primary results. First, higher temperatures substantially reduce economic growth in poor countries. Second, higher temperatures may reduce growth rates, not just the level of output. Third, higher temperatures have wide-ranging effects, reducing agricultural output, industrial output, and political stability. These findings inform debates over climate's role in economic development and suggest the possibility of substantial negative impacts of higher temperatures on poor countries
- âŠ