1,469 research outputs found

    Universality in the three-dimensional random bond quantum Heisenberg antiferromagnet

    Full text link
    The three-dimensional quenched random bond diluted (J1J2)(J_1-J_2) quantum Heisenberg antiferromagnet is studied on a simple-cubic lattice. Using extensive stochastic series expansion quantum Monte Carlo simulations, we perform very long runs for L×L×LL \times L \times L lattice up to L=48L=48. By employing standard finite-size scaling method, the numerical values of the N\'eel temperature are determined with high precision as a function of the coupling ratio r=J2/J1r=J_2/J_1. Based on the estimated critical exponents, we find that the critical behavior of the considered model belongs to the pure classical 3D3D O(3)O(3) Heisenberg universality class.Comment: 8 pages, 7 figure

    A physical mechanism to explain the delivery of chemical penetration enhancers into skin during transdermal sonophoresis — Insight into the observed synergism

    Get PDF
    The synergism between low-frequency sonophoresis (LFS) and chemical penetration enhancers (CPEs), especially surfactants, in transdermal enhancement has been investigated extensively since this phenomenon was first observed over a decade ago. In spite of the identifying that the origin of this synergism is the increased penetration and subsequent dispersion of CPEs in the skin in response to LFS treatment, to date, no mechanism has been directly proposed to explain how LFS induces the observed increased transport of CPEs. In this study, we propose a plausible physical mechanism by which the transport of all CPEs is expected to have significantly increased flux into the localized-transport regions (LTRs) of LFS-treated skin. Specifically, the collapse of acoustic cavitation microjets within LTRs induces a convective flux. In addition, because amphiphilic molecules preferentially adsorb onto the gas/water interface of cavitation bubbles, amphiphiles have an additional adsorptive flux. In this sense, the cavitation bubbles effectively act as carriers for amphiphilic molecules, delivering surfactants directly into the skin when they collapse at the skin surface as cavitation microjets. The flux equations derived for CPE delivery into the LTRs and non-LTRs during LFS treatment, compared to that for untreated skin, explain why the transport of all CPEs, and to an even greater extent amphiphilic CPEs, is increased during LFS treatment. The flux model is tested with a non-amphiphilic CPE (propylene glycol) and both nonionic and ionic amphiphilic CPEs (octyl glucoside and sodium lauryl sulfate, respectively), by measuring the flux of each CPE into untreated skin and the LTRs and non-LTRs of LFS-treated skin. The resulting data shows very good agreement with the proposed flux model.National Institutes of Health (U.S.) (Grant EB-00351)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Grant DAAD-19-02-D-002

    Structural, optical and magnetic properties of Zn1−xMnxO micro-rod arrays synthesized by spray pyrolysis method

    Get PDF
    Undoped and Mn-doped ZnO micro-rod arrays were fabricated by the spray pyrolysis method on glass substrates. X-ray diffraction and scanning electron microscopy showed that these micro-rod arrays had a polycrystalline wurtzite structure and high c-axis preferred orientation. Photoluminescence studies at 10 K show that the increase of manganese content leads to a relative decrease in deep level band intensity with respect to undoped ZnO. Magnetic measurements indicated that undoped ZnO was diamagnetic in nature whereas Mn-doped ZnO samples exhibited ferromagnetic behavior at room temperature, which is possibly related to the substitution of Mn ions (Mn2+) for Zn ions in the ZnO lattice

    Mask-Associated Dry Eye (MADE) in healthcare professionals working at COVID-19 pandemic clinics

    Get PDF
    Background: Healthcare professionals working at COVID-19 pandemic clinics have to work with masks during long hours. After the widespread use of masks in the community, many mask-related side effects were reported to clinics. The increase in the number of applicants with dry eye symptoms due to mask use in ophthalmology clinics has led to the emergence of the concept of mask-associated dry eye (MADE). We think that it would be valuable to evaluate ocular surface tests with a comparative study using healthcare professionals working in pandemic clinics, which we think is the right study group to examine the effects of long-term mask use. Aims: We aimed to evaluate the mask-associated dry eye (MADE) symptoms and findings in healthcare professionals who have to work prolonged time with face masks in coronavirus disease 2019 (COVID-19) pandemic clinics. Patients and Methods: In this prospective, observational comparative clinical study, healthcare professionals who use the mask for a long time and work in COVID-19 pandemic clinics were compared with an age and sex-matched control group consisting of short-term masks users, from April 2021 to November 2021. All participants underwent the Ocular Surface Disease Index (OSDI) questionnaire, tear film break-up time (T-BUT), Oxford staining score, Schirmer's test I, and meibography with infrared transillumination. Results: The long-term mask user group consisted of 64 people, while the short-term mask user group consisted of 66 people (260 eyes, total). The OSDI score and Schirmer I measurement were not statistically different between the two groups. T-BUT was statistically significantly shorter in the long-term group (P: 0.008); lid parallel-conjunctival fold, Oxford staining score, and upper and lower lid meibography score were found to be significantly higher in the long-term group (P < 0.001, P: 0.004, P: 0.049, P: 0.044, respectively). Conclusion: Healthcare professionals with longer mask-wearing times are at greater risk of ocular surface damage. It may be considered to prevent this damage by blocking airflow to the ocular surface, such as by wearing a face mask properly or fitting it over the nose with surgical tape. Those who have to work with a mask for a long time during the COVID-19 pandemic should keep in mind the ophthalmology follow-up for eye comfort and ocular surface health

    Low-Frequency Sonophoresis: Application to the Transdermal Delivery of Macromolecules and Hydrophilic Drugs

    Get PDF
    Importance of the field: Transdermal delivery of macromolecules provides an attractive alternative route of drug administration when compared to oral delivery and hypodermic injection because of its ability to bypass the harsh gastrointestinal tract and deliver therapeutics non-invasively. However, the barrier properties of the skin only allow small, hydrophobic permeants to traverse the skin passively, greatly limiting the number of molecules that can be delivered via this route. The use of low-frequency ultrasound for the transdermal delivery of drugs, referred to as low-frequency sonophoresis (LFS), has been shown to increase skin permeability to a wide range of therapeutic compounds, including both hydrophilic molecules and macromolecules. Recent research has demonstrated the feasibility of delivering proteins, hormones, vaccines, liposomes and other nanoparticles through LFS-treated skin. In vivo studies have also established that LFS can act as a physical immunization adjuvant. LFS technology is already clinically available for use with topical anesthetics, with other technologies currently under investigation. Areas covered in this review: This review provides an overview of mechanisms associated with LFS-mediated transdermal delivery, followed by an in-depth discussion of the current applications of LFS technology for the delivery of hydrophilic drugs and macromolecules, including its use in clinical applications. What the reader will gain: The reader will gain an insight into the field of LFS-mediated transdermal drug delivery, including how the use of this technology can improve on more traditional drug delivery methods. Take home message: Ultrasound technology has the potential to impact many more transdermal delivery platforms in the future due to its unique ability to enhance skin permeability in a controlled manner.National Institutes of Health (U.S.) (Grant EB-00351)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Grant DAAD-19-02-D-002

    Fluorescent penetration enhancers for transdermal applications

    Get PDF
    Chemical penetration enhancers are often used to enhance transdermal drug delivery. However, the fundamental mechanisms that govern the interactions between penetration enhancers and skin are not fully understood. Therefore, the goal of this work was to identify naturally fluorescent penetration enhancers (FPEs) in order to utilize well-established fluorescence techniques to directly study the behavior of FPEs within skin. In this study, 12 fluorescent molecules with amphiphilic characteristics were evaluated as skin penetration enhancers. Eight of the molecules exhibited significant activity as skin penetration enhancers, determined using skin current enhancement ratios. In addition, to illustrate the novel, direct, and non-invasive visualization of the behavior of FPEs within skin, three case studies involving the use of two-photon fluorescence microscopy (TPM) are presented, including visualizing glycerol-mitigated and ultrasound-enhanced FPE skin penetration. Previous TPM studies have indirectly visualized the effect of penetration enhancers on the skin by using a fluorescent dye to probe the transdermal pathways of the enhancer. These effects can now be directly visualized and investigated using FPEs. Finally, future studies are proposed for generating FPE design principles. The combination of FPEs with fluorescence techniques represents a useful novel approach for obtaining physical insights on the behavior of penetration enhancers within the skin.National Institutes of Health (U.S.) (Grant EB-00351)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Grant DAAD-19-02-D-002)National Science Foundation (U.S.). Graduate Research FellowshipConselho Nacional de Pesquisas (Brazil)Fundacao de Amparo a Pesquisa do Estado de Sao Paul

    Dynamic phase transition properties and hysteretic behavior of a ferrimagnetic core-shell nanoparticle in the presence of a time dependent magnetic field

    Full text link
    We have presented dynamic phase transition features and stationary-state behavior of a ferrimagnetic small nanoparticle system with a core-shell structure. By means of detailed Monte Carlo simulations, a complete picture of the phase diagrams and magnetization profiles have been presented and the conditions for the occurrence of a compensation point TcompT_{comp} in the system have been investigated. According to N\'{e}el nomenclature, the magnetization curves of the particle have been found to obey P-type, N-type and Q-type classification schemes under certain conditions. Much effort has been devoted to investigation of hysteretic response of the particle and we observed the existence of triple hysteresis loop behavior which originates from the existence of a weak ferromagnetic core coupling Jc/JshJ_{c}/J_{sh}, as well as a strong antiferromagnetic interface exchange interaction Jint/JshJ_{int}/J_{sh}. Most of the calculations have been performed for a particle in the presence of oscillating fields of very high frequencies and high amplitudes in comparison with exchange interactions which resembles a magnetic system under the influence of ultrafast switching fields. Particular attention has also been paid on the influence of the particle size on the thermal and magnetic properties, as well as magnetic features such as coercivity, remanence and compensation temperature of the particle. We have found that in the presence of ultrafast switching fields, the particle may exhibit a dynamic phase transition from paramagnetic to a dynamically ordered phase with increasing ferromagnetic shell thickness.Comment: 12 pages, 12 figure

    Applicability and safety of dual-frequency ultrasonic treatment for the transdermal delivery of drugs

    Get PDF
    Low-frequency ultrasound presents an attractive method for transdermal drug delivery. The controlled, yet non-specific nature of enhancement broadens the range of therapeutics that can be delivered, while minimizing necessary reformulation efforts for differing compounds. Long and inconsistent treatment times, however, have partially limited the attractiveness of this method. Building on recent advances made in this area, the simultaneous use of low- and high-frequency ultrasound is explored in a physiologically relevant experimental setup to enable the translation of this treatment to testing in vivo. Dual-frequency ultrasound, utilizing 20 kHz and 1 MHz wavelengths simultaneously, was found to significantly enhance the size of localized transport regions (LTRs) in both in vitro and in vivo models while decreasing the necessary treatment time compared to 20 kHz alone. Additionally, LTRs generated by treatment with 20 kHz + 1 MHz were found to be more permeable than those generated with 20 kHz alone. This was further corroborated with pore-size estimates utilizing hindered-transport theory, in which the pores in skin treated with 20 kHz + 1 MHz were calculated to be significantly larger than the pores in skin treated with 20 kHz alone. This demonstrates for the first time that LTRs generated with 20 kHz + 1 MHz are also more permeable than those generated with 20 kHz alone, which could broaden the range of therapeutics and doses administered transdermally. With regard to safety, treatment with 20 kHz + 1 MHz both in vitro and in vivo appeared to result in no greater skin disruption than that observed in skin treated with 20 kHz alone, an FDA-approved modality. This study demonstrates that dual-frequency ultrasound is more efficient and effective than single-frequency ultrasound and is well-tolerated in vivo.National Institutes of Health (U.S.) (Grant EB-00351)National Institutes of Health (U.S.) (Grant CA014051

    Application of the Aqueous Porous Pathway Model to Quantify the Effect of Sodium Lauryl Sulfate on Ultrasound-Induced Skin Structural Perturbation

    Get PDF
    This study investigated the effect of sodium lauryl sulfate (SLS) on skin structural perturbation when utilized simultaneously with low-frequency sonophoresis (LFS). Pig full-thickness skin (FTS) and pig split-thickness skin (STS) treated with LFS/SLS and LFS were analyzed in the context of the aqueous porous pathway model to quantify skin perturbation through changes in skin pore radius and porosity-to-tortuosity ratio (ε/τ). In addition, skin treatment times required to attain specific levels of skin electrical resistivity were analyzed to draw conclusions about the effect of SLS on reproducibility and predictability of skin perturbation. We found that LFS/SLS-treated FTS, LFS/SLS-treated STS, and LFS-treated FTS exhibited similar skin perturbation. However, LFS-treated STS exhibited significantly higher skin perturbation, suggesting greater structural changes to the less robust STS induced by the purely physical enhancement mechanism of LFS. Evaluation of ε/τ values revealed that LFS/SLS-treated FTS and STS have similar transport pathways, whereas LFS-treated FTS and STS have lower ε/τ values. In addition, LFS/SLS treatment times were much shorter than LFS treatment times for both FTS and STS. Moreover, the simultaneous use of SLS and LFS not only results in synergistic enhancement, as reflected in the shorter skin treatment times, but also in more predictable and reproducible skin perturbation.National Institutes of Health (U.S.) (Grant EB-00351)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Grant DAAD-19-02-D-002)National Science Foundation (U.S.). Graduate Research Fellowship Progra

    CHANGES OF THYROID HORMONES IN DIFFERENT PHYSIOLOGICAL PERIODS IN WHITE GOATS

    Get PDF
    ABSTRACT The levels of thyroid hormones are important indicator of metabolic activity. The knowledge of the metabolic activity in different physiological periods, animals readjusted dietary regimen. Therefore, in this study, changes of triiodotironine (T3) and thyroxine (T4) hormones in the blood serum of female (n=14) and male (n=9) white goats were studied for a duration of one year through different physiological periods [breeding (September-October), gestation (November to March), postpartum-sucking (April-May) and milking (June to August)]. Results show that the differences in T3 and T4 hormone levels between sexes are statistically unimportant in breeding, gestation, postpartum-sucking and milking periods, while the changes for each sex between the physiological periods are important (p&lt;0.05). Also, it has been found out that the thyroid hormone levels in different physiological periods are under the influence of the environmental temperature changes
    corecore