368 research outputs found

    Serologic indices of hepatitis B virus infection in military recruits in Greece (2004–2005)

    Get PDF
    BACKGROUND: The prevalence of hepatitis B virus infection in Greece has been decreasing over the last decades. However, recent epidemiological data are lacking. METHODS: We studied 1,840 Army recruits from 05/2004 until 10/2005, and performed serological testing for HBsAg, anti-HBsAg, and anti-HBcAg. We also examined their association with several factors, including age, residential area, socioeconomic class, and educational level. RESULTS: Mean age (± SD) of the recruits was 20.5 (± 2.1) years. Antibodies to HBV core antigen [anti-HBcAg (+)] were found in 31 (1.68%) of 1,840 participants. Only 6 (0.32%) were HBsAg (+)/anti-HBsAg (-)/anti-HBcAg (+), while 21 (1.14%) were HBsAg (-)/anti-HBsAg (+)/anti-HBcAg (+), and 4 (0.22%) were HBsAg (-)/anti-HBsAg (-)/anti-HBcAg (+). Overall, 1,144 recruits (62.17%) had antibodies against HBsAg [HBsAg (-)/anti-HBsAg (+)/anti-HBcAg (-)]; 665 recruits (36.14%) had undetectable anti-HBsAg levels. Multivariable analysis showed that younger age (OR: 0.87; 95% CI: 0.82–0.92) and advanced educational level (OR: 1.59; 95% CI: 1.32–1.93) were independently associated with serologic evidence suggestive of previous HBV vaccination. CONCLUSION: We document a further decline of the prevalence of chronic HBV infection among Greek military recruits, a fact that may support the effectiveness of the ongoing immunization programme

    Safety, Humoral and Cell Mediated Immune Responses to Two Formulations of an Inactivated, Split-Virion Influenza A/H5N1 Vaccine in Children

    Get PDF
    BACKGROUND:Highly pathogenic influenza A/H5N1 has caused outbreaks in wild birds and poultry in Asia, Africa and Europe. It has also infected people, especially children, causing severe illness and death. Although the virus shows limited ability to transmit between humans, A/H5N1 represents a potential source of the next influenza pandemic. This study assesses the safety and immunogenicity of aluminium hydroxide adjuvanted (Al) and non adjuvanted influenza A/Vietnam/1194/2004 NIBRG-14 (H5N1) vaccine in children. METHODS AND FINDINGS:In a Phase II, open, randomised, multicentre trial 180 children aged 6 months to 17 years received two injections, 21 days apart, of vaccine containing either: 30 microg haemagglutinin (HA) with adjuvant (30 microg+Al) or 7.5 microg HA without adjuvant. An additional 60 children aged 6-35 months received two "half dose" injections (ie 15 microg+Al or 3.8 microg). Safety was followed for 21 days after vaccination. Antibody responses were assessed 21 days after each injection and cellular immune responses were explored. Vaccination appeared well tolerated in all age groups. The 30 microg+Al formulation was more immunogenic than 7.5 microg in all age groups: in these two groups 79% and 46% had haemagglutinination inhibition antibody titres > or =32 (1/dil). Among 6-35 month-olds, the full doses were more immunogenic than their half dose equivalents. Vaccination induced a predominantly Th2 response against H5 HA. CONCLUSIONS:This influenza A(H5N1) vaccine was well tolerated and immunogenic in children and infants, with Al adjuvant providing a clear immunogenic advantage. These results demonstrate that an H5N1 Al-adjuvanted vaccine, previously shown to be immunogenic and safe in adults, can also be used in children, the group most at risk for pandemic influenza

    CD3Z Genetic Polymorphism in Immune Response to Hepatitis B Vaccination in Two Independent Chinese Populations

    Get PDF
    Vaccination against hepatitis B virus is an effective and routine practice that can prevent infection. However, vaccine-induced immunity to hepatitis B varies among individuals. CD4+ T helper cells, which play an important role in both cellular and humoral immunity, are involved in the immune response elicited by vaccination. Polymorphisms in the genes involved in stimulating the activation and proliferation of CD4+ T helper cells may influence the immune response to hepatitis B vaccination. In the first stage of the present study, a total of 111 single nucleotide polymorphisms (SNPs) in 17 genes were analyzed, using the iPLEX MassARRAY system, among 214 high responders and 107 low responders to hepatitis B vaccination. Three SNPs (rs12133337 and rs10918706 in CD3Z, rs10912564 in OX40L) were associated significantly with the immune response to hepatitis B vaccination (P = 0.008, 0.041, and 0.019, respectively). The three SNPs were analyzed further with the TaqMan-MGB or TaqMan-BHQ probe-based real-time polymerase chain reaction in another independent population, which included 1090 high responders and 636 low responders. The minor allele ‘C’ of rs12133337 continued to show an association with a lower response to hepatitis B vaccination (P = 0.033, odds radio = 1.28, 95% confidence interval = 1.01–1.61). Furthermore, in the stratified analysis for both the first and second populations, the association of the minor allele ‘C’ of rs12133337 with a lower response to hepatitis B vaccination was more prominent after individuals who were overweight or obese (body mass index ≥25 kg/m2) were excluded (1st stage: P = 0.003, 2nd stage: P = 0.002, P-combined = 9.47e-5). These findings suggest that the rs12133337 polymorphism in the CD3Z gene might affect the immune response to hepatitis B vaccination, and that a lower BMI might increase the contribution of the polymorphism to immunity to hepatitis B vaccination

    Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Titanium dioxide (TiO<sub>2</sub>) nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO<sub>2 </sub>(200 nm sphere) is relatively inert when internalized into a biological model system (in vivo or in vitro). For this reason, TiO<sub>2 </sub>nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension < 100 nm) may or may not exhibit the same toxic potential as the original material. A further complicating issue is the effect of modifying or engineering of the nanomaterial to be structurally and geometrically different from the original material.</p> <p>Results</p> <p>TiO<sub>2 </sub>nanospheres, short (< 5 μm) and long (> 15 μm) nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase TiO<sub>2 </sub>nanomaterial into a fibre structure of greater than 15 μm creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long TiO<sub>2 </sub>nanobelts interact with lung macrophages in a manner very similar to asbestos or silica.</p> <p>Conclusions</p> <p>These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption.</p

    Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: summary of NATO Advanced Research Workshop

    Get PDF
    Nanomaterials and their associated technologies hold promising opportunities for the development of new materials and applications in a wide variety of disciplines, including medicine, environmental remediation, waste treatment, and energy conservation. However, current information regarding the environmental effects and health risks associated with nanomaterials is limited and sometimes contradictory. This article summarizes the conclusions of a 2008 NATO workshop designed to evaluate the wide-scale implications (e.g., benefits, risks, and costs) of the use of nanomaterials on human health and the environment. A unique feature of this workshop was its interdisciplinary nature and focus on the practical needs of policy decision makers. Workshop presentations and discussion panels were structured along four main themes: technology and benefits, human health risk, environmental risk, and policy implications. Four corresponding working groups (WGs) were formed to develop detailed summaries of the state-of-the-science in their respective areas and to discuss emerging gaps and research needs. The WGs identified gaps between the rapid advances in the types and applications of nanomaterials and the slower pace of human health and environmental risk science, along with strategies to reduce the uncertainties associated with calculating these risks
    corecore