1,797 research outputs found

    An Introduction to Quantum Computing for Non-Physicists

    Get PDF
    Richard Feynman's observation that quantum mechanical effects could not be simulated efficiently on a computer led to speculation that computation in general could be done more efficiently if it used quantum effects. This speculation appeared justified when Peter Shor described a polynomial time quantum algorithm for factoring integers. In quantum systems, the computational space increases exponentially with the size of the system which enables exponential parallelism. This parallelism could lead to exponentially faster quantum algorithms than possible classically. The catch is that accessing the results, which requires measurement, proves tricky and requires new non-traditional programming techniques. The aim of this paper is to guide computer scientists and other non-physicists through the conceptual and notational barriers that separate quantum computing from conventional computing. We introduce basic principles of quantum mechanics to explain where the power of quantum computers comes from and why it is difficult to harness. We describe quantum cryptography, teleportation, and dense coding. Various approaches to harnessing the power of quantum parallelism are explained, including Shor's algorithm, Grover's algorithm, and Hogg's algorithms. We conclude with a discussion of quantum error correction

    A unified evaluation of iterative projection algorithms for phase retrieval

    Get PDF
    Iterative projection algorithms are successfully being used as a substitute of lenses to recombine, numerically rather than optically, light scattered by illuminated objects. Images obtained computationally allow aberration-free diffraction-limited imaging and the possibility of using radiation for which no lenses exist. The challenge of this imaging technique is transfered from the lenses to the algorithms. We evaluate these new computational ``instruments'' developed for the phase retrieval problem, and discuss acceleration strategies.Comment: 12 pages, 9 figures, revte

    The effects of superconductor-stabilizer interfacial resistance on quench of a pancake coil made out of coated conductor

    Full text link
    We present the results of numerical analysis of normal zone propagation in a stack of YBa2Cu3O7xYBa_2Cu_3O_{7-x} coated conductors which imitates a pancake coil. Our main purpose is to determine whether the quench protection quality of such coils can be substantially improved by increased contact resistance between the superconducting film and the stabilizer. We show that with increased contact resistance the speed of normal zone propagation increases, the detection of a normal zone inside the coil becomes possible earlier, when the peak temperature inside the normal zone is lower, and stability margins shrink. Thus, increasing contact resistance may become a viable option for improving the prospects of coated conductors for high TcT_c magnets applications.Comment: 9 pages, 4 figure

    The effects of superconductor-stabilizer interfacial resistance on quench of current-carrying coated conductor

    Full text link
    We present the results of numerical analysis of a model of normal zone propagation in coated conductors. The main emphasis is on the effects of increased contact resistance between the superconducting film and the stabilizer on the speed of normal zone propagation, the maximum temperature rise inside the normal zone, and the stability margins. We show that with increasing contact resistance the speed of normal zone propagation increases, the maximum temperature inside the normal zone decreases, and stability margins shrink. This may have an overall beneficial effect on quench protection quality of coated conductors. We also briefly discuss the propagation of solitons and development of the temperature modulation along the wire.Comment: To be published in Superconductor Science and Technology. This preprint contains one animated figure (Fig. 6(a)). when asked whether you want to play the content, click "Play". Acrobat Reader (Windows and Mac, but not Linux) will play embedded flash movies. In the printed copy Fig. 6(b) will show the temperature profile at gamma t=15

    Force-matched embedded-atom method potential for niobium

    Get PDF
    Large-scale simulations of plastic deformation and phase transformations in alloys require reliable classical interatomic potentials. We construct an embedded-atom method potential for niobium as the first step in alloy potential development. Optimization of the potential parameters to a well-converged set of density-functional theory (DFT) forces, energies, and stresses produces a reliable and transferable potential for molecular dynamics simulations. The potential accurately describes properties related to the fitting data, and also produces excellent results for quantities outside the fitting range. Structural and elastic properties, defect energetics, and thermal behavior compare well with DFT results and experimental data, e.g., DFT surface energies are reproduced with less than 4% error, generalized stacking-fault energies differ from DFT values by less than 15%, and the melting temperature is within 2% of the experimental value.Comment: 17 pages, 13 figures, 7 table

    Frequency of alterations in qSOFA, SIRS, MEWS and NEWS scores during the emergency department stay in infectious patients:a prospective study

    Get PDF
    BACKGROUND: For emergency department (ED) patients with suspected infection, a vital sign-based clinical rule is often calculated shortly after the patient arrives. The clinical rule score (normal or abnormal) provides information about diagnosis and/or prognosis. Since vital signs vary over time, the clinical rule scores can change as well. In this prospective multicentre study, we investigate how often the scores of four frequently used clinical rules change during the ED stay of patients with suspected infection. METHODS: Adult (≥ 18 years) patients with suspected infection were prospectively included in three Dutch EDs between March 2016 and December 2019. Vital signs were measured in 30-min intervals and the quick Sequential Organ Failure Assessment (qSOFA) score, the Systemic Inflammatory Response Syndrome (SIRS) criteria, the Modified Early Warning Score and the National Early Warning Score (NEWS) score were calculated. Using the established cut-off points, we analysed how often alterations in clinical rule scores occurred (i.e. switched from normal to abnormal or vice versa). In addition, we investigated which vital signs caused most alterations. RESULTS: We included 1433 patients, of whom a clinical rule score changed once or more in 637 (44.5%) patients. In 6.7–17.5% (depending on the clinical rule) of patients with an initial negative clinical rule score, a positive score occurred later during ED stay. In over half (54.3–65.0%) of patients with an initial positive clinical rule score, the score became negative later on. The respiratory rate caused most (51.2%) alterations. CONCLUSION: After ED arrival, alterations in qSOFA, SIRS, MEWS and/or NEWS score are present in almost half of patients with suspected infection. The most contributing vital sign to these alterations was the respiratory rate. One in 6–15 patients displayed an abnormal clinical rule score after a normal initial score. Clinicians should be aware of the frequency of these alterations in clinical rule scores, as clinical rules are widely used for diagnosis and/or prognosis and the optimal moment of assessing them is unknown

    Widely-tunable mid-infrared ring cavity pump-enhanced OPO and application in photo-thermal interferometric trace ethane detection

    Get PDF
    Funding: Innovate UK (133076); Engineering and Physical Sciences Research Council (EP//L01596X/1, EP/M01326X/1, EP/M024385/1); European Research Council (ERC-2018-STG 803665).The development of a broadly and accurately tunable single-frequency mid-infrared laser source and its application to a sensitive laser absorption detection method are described. Photo-thermal interferometric spectroscopy is employed as a phase-sensitive method to detect the minute refractive index change caused by the heating of a gas under laser radiation. A separate probe beam allows for the spectrally-interesting mid-infrared region to be examined whilst utilizing low cost, high detectivity photodetectors in the visible/near-infrared region. We also describe the implementation of a Sagnac interferometer to minimize the effects of environmental perturbation and provide inherent passive stability. A continuous-wave ring-cavity pump-enhanced OPO has been developed to provide excitation light from 3–4 µm at 140 mW with the ability to mode-hop tune continuously over 90 cm−1 in 0.07 cm−1 steps. Complementary use of both detection apparatus and excitation source has allowed for presence of ethane to be detected down to 200 parts per billion.developed to provide excitation light from 3–4 µm at 140 mW with the ability to mode-hop tune continuously over 90 cm−1 in 0.07 cm−1 steps. Complementary use of both detection apparatus and excitation source has allowed for presence of ethane to be detected down to 200 parts per billion.Publisher PDFPeer reviewe

    Resonance phenomena in asymmetric superconducting quantum interference devices

    Full text link
    Theory of self induced resonances in asymmetric two-junction interferometer device is presented. In real devices it is impossible to have an ideal interferometer free of imperfections. Thus, we extended previous theoretical approaches introducing a model which contains several asymmetries: Josephson current ϵ\epsilon, capacitances χ\chi and dissipation ρ\rho presented in an equivalent circuit. Moreover, non conventional symmetry of the order parameter in high temperature superconducting quantum interference devices forced us to include phase asymmetries. Therefore, the model has been extended to the case of π\pi-shift interferometers, where a phase shift is present in one of the junctions.Comment: accepted to PRB, low quality figure

    Exploring Halo Substructure with Giant Stars III: First Results from the Grid Giant Star Survey and Discovery of a Possible Nearby Sagittarius Tidal Structure in Virgo

    Get PDF
    We describe first results of a spectroscopic probe of selected fields from the Grid Giant Star Survey. Multifiber spectroscopy of several hundred stars in a strip of eleven fields along delta approximately -17^{circ}, in the range 12 <~ alpha <~ 17 hours, reveals a group of 8 giants that have kinematical characteristics differing from the main field population, but that as a group maintain coherent, smoothly varying distances and radial velocities with position across the fields. Moreover, these stars have roughly the same abundance, according to their MgH+Mgb absorption line strengths. Photometric parallaxes place these stars in a semi-loop structure, arcing in a contiguous distribution between 5.7 and 7.9 kpc from the Galactic center. The spatial, kinematical, and abundance coherence of these stars suggests that they are part of a diffuse stream of tidal debris, and one roughly consistent with a wrapped, leading tidal arm of the Sagittarius dwarf spheroidal galaxy.Comment: 8 pages including 4 figures. Accepted for publication in ApJ

    Hybrid Newton-type method for a class of semismooth equations

    Get PDF
    In this paper, we present a hybrid method for the solution of a class of composite semismooth equations encountered frequently in applications. The method is obtained by combining a generalized finite-difference Newton method to an inexpensive direct search method. We prove that, under standard assumptions, the method is globally convergent with a local rate of convergence which is superlinear or quadratic. We report also several numerical results obtained applying the method to suitable reformulations of well-known nonlinear complementarity problem
    corecore