10 research outputs found

    Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Get PDF
    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced

    Study of diatoms/aqueous solution interface. I. Acid-base equilibria and spectroscopic observation of freshwater and marine species

    No full text
    International audienceThis work reports on a concerted study of diatom-water interfaces for two marine planktonic ( Thalassiosira weissflogii= TW, Skeletonema costatum= SC) and two freshwater periphytic species ( Achnanthidium minutissimum= AMIN, Navicula minima= NMIN). Proton surface adsorption was measured at 25°C, pH of 3 to 11 and ionic strength of 0.001 to 1.0 M via potentiometric titration using a limited residence time reactor. Electrophoretic mobility of living cells and their frustules was measured as a function of pH and ionic strength. Information on the chemical composition and molecular structure of diatoms surfaces was obtained using FT-IR (in situ attenuated total reflectance) and X-ray Photoelectron Spectroscopy (XPS). The surface area of living cells and their frustules in aqueous solutions was quantified using Small Angle X-ray Scattering Spectroscopy (SAXS). These observations allowed us to identify the nature and to determine the concentration of the major surface functional groups (carboxyl, amine and silanol) responsible for the amphoteric behavior of cell surfaces in aqueous solutions. Taking into account the relative proportion of surface sites inferred from XPS and FT-IR measurements, a surface complexation model of diatom-solution interfaces was generated on the basis of surface titration results. The cell-normalized ratios of the three major surface sites {>COOH}: {>NH 3}: {>SiOH} are 1:1:0.1, 1:10:0, 1:1:0.4 and 1:1:0.3 for TW, SC, AMIN and NMIN, respectively. The total amount of proton/hydroxyl active surface sites for investigated species ranges from 1 (NMIN) to 9 (SC) mmol/g dry weight. Normalization of these site densities to the area of siliceous skeleton yields values between 0.3 (NMIN) and 0.9 mmol/m 2 (SC) which are an order of magnitude higher than corresponding values for organic-free frustules or amorphous silica. This suggests that the amphoteric properties and possibly the affinity for metal adsorption of diatom cultures are essentially controlled by the 3-D organic layers covering the silica frustule

    High riverine COâ‚‚ emissions at the permafrost boundary of Western Siberia

    No full text
    Abstract The fate of the vast stocks of organic carbon stored in permafrost of the Western Siberian Lowland, the world’s largest peatland, is uncertain. Specifically, the amount of greenhouse gas emissions from rivers in the region is unknown. Here we present estimates of annual CO₂ emissions from 58 rivers across all permafrost zones of the Western Siberian Lowland, between 56 and 67° N. We find that emissions peak at the permafrost boundary, and decrease where permafrost is more prevalent and in colder climatic conditions. River CO₂ emissions were high, and on average two times greater than downstream carbon export. We suggest that high emissions and emission/export ratios are a result of warm temperatures and the long transit times of river water. We show that rivers in the Western Siberian Lowland play an important role in the carbon cycle by degassing terrestrial carbon before its transport to the Arctic Ocean, and suggest that changes in both temperature and precipitation are important for understanding and predicting high-latitude river CO₂ emissions in a changing climate
    corecore