961 research outputs found
Anisotropic Transport Properties of Ferromagnetic-Superconducting Bilayers
We study the transport properties of vortex matter in a superconducting thin
film separated by a thin insulator layer from a ferromagnetic layer. We assume
an alternating stripe structure for both FM and SC layers as found in [7]. We
calculate the periodic pinning force in the stripe structure resulting from a
highly inhomogeneous distribution of the vortices and antivortices. We show
that the transport properties in FM-SC bilayer are highly anisotropic. In the
absence of random pinning it displays a finite resistance for the current
perpendicular to stripes and is superconducting for the current parallel to
stripes. The average vortex velocity, electric field due to the vortex motion,
Josephson frequency and higher harmonics of the vortex oscillatory motion are
calculated.Comment: 4 pages, 2figures, Submitted to PR
Thermal melting of density waves on the square lattice
We present the theory of the effect of thermal fluctuations on commensurate
"p x p" density wave ordering on the square lattice (p >= 3, integer). For the
case in which this order is lost by a second order transition, we argue that
the adjacent state is generically an incommensurate striped state, with
commensurate p-periodic long range order along one direction, and
incommensurate quasi-long-range order along the orthogonal direction. We also
present the routes by which the fully disordered high temperature state can be
reached. For p=4, and at special commensurate densities, the "4 x 4"
commensurate state can melt directly into the disordered state via a self-dual
critical point with non-universal exponents.Comment: 12 pages, 5 figure
Phase Diagram for Magnon Condensate in Yttrium Iron Garnet Film
Recently, magnons, which are quasiparticles describing the collective motion
of spins, were found to undergo Bose-Einstein condensation (BEC) at room
temperature in films of Yttrium Iron Garnet (YIG). Unlike other quasiparticle
BEC systems, this system has a spectrum with two degenerate minima, which makes
it possible for the system to have two condensates in momentum space. Recent
Brillouin Light scattering studies for a microwave-pumped YIG film of thickness
d=5 m and field H=1 kOe find a low-contrast interference pattern at the
characteristic wavevector of the magnon energy minimum. In this report, we
show that this modulation pattern can be quantitatively explained as due to
non-symmetric but coherent Bose-Einstein condensation of magnons into the two
energy minima. Our theory predicts a transition from a high-contrast symmetric
phase to a low-contrast non-symmetric phase on varying the and , and a
new type of collective oscillations.Comment: 6 figures. Accepted by Nature Scientific Report
Image of Veselago lens based upon two-dimensional photonic crystal with triangular lattice
The construction of the multi-focal Veselago lens predicted earlier is
proposed on the basis of a uniaxial photonic crystal consisting of cylindrical
air holes in silicon that make a triangular lattice in a plane perpendicular to
the axis of the crystal. The object and image are in air. The period of the
crystal should be to work at the wavelength .
The lens does not provide superlensing but the half-width of the image is
. The lens is shown to have wave guiding properties depending on
the substrate material.Comment: 15 pages, 10 figure
Next-to-leading order static gluon self-energy for anisotropic plasmas
In this paper the structure of the next-to-leading (NLO) static gluon self
energy for an anisotropic plasma is investigated in the limit of a small
momentum space anisotropy. Using the Ward identities for the static hard-loop
(HL) gluon polarization tensor and the (nontrivial) static HL vertices, we
derive a comparatively compact form for the complete NLO correction to the
structure function containing the space-like pole associated with magnetic
instabilities. On the basis of a calculation without HL vertices, it has been
conjectured that the imaginary part of this structure function is nonzero,
rendering the space-like poles integrable. We show that there are both positive
and negative contributions when HL vertices are included, highlighting the
necessity of a complete numerical evaluation, for which the present work
provides the basis.Comment: 9 pages, 2 figure
Coulomb drag between quantum wires with different electron densities
We study the way back-scattering electron--electron interaction generates
Coulomb drag between quantum wires with different densities. At low temperature
the system can undergo a commensurate-- incommensurate transition as the
potential difference between the two wires passes a critical value
, and this transition is reflected in a marked change in the dependence
of drag resistivity on and . At high temperature a density difference
between the wires suppresses Coulomb drag induced by back scattering, and we
use the Tomonaga--Luttinger model to study this suppression in detail.Comment: 6 pages, 4 figure
Mixed Heisenberg Chains. I. The Ground State Problem
We consider a mechanism for competing interactions in alternating Heisenberg
spin chains due to the formation of local spin-singlet pairs. The competition
of spin-1 and spin-0 states reveals hidden Ising symmetry of such alternating
chains.Comment: 7 pages, RevTeX, 4 embedded eps figures, final versio
Energy Gap Induced by Impurity Scattering: New Phase Transition in Anisotropic Superconductors
It is shown that layered superconductors are subjected to a phase transition
at zero temperature provided the order parameter (OP) reverses its sign on the
Fermi-surface but its angular average is finite. The transition is regulated by
an elastic impurity scattering rate . The excitation energy spectrum,
being gapless at the low level of scattering, develops a gap as soon as the
scattering rate exceeds some critical value of .Comment: Revtex, 11 page
- …