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Recently, magnons, which are quasiparticles describing the collective motion of spins, were found
to undergo Bose-Einstein condensation (BEC) at room temperature in films of Yttrium Iron Garnet
(YIG). Unlike other quasiparticle BEC systems, this system has a spectrum with two degenerate
minima, which makes it possible for the system to have two condensates in momentum space.
Recent Brillouin Light scattering studies for a microwave-pumped YIG film of thickness d = 5 µm
and field H = 1 kOe find a low-contrast interference pattern at the characteristic wavevector Q of the
magnon energy minimum. In this report, we show that this modulation pattern can be quantitatively
explained as due to non-symmetric but coherent Bose-Einstein condensation of magnons into the
two energy minima. Our theory predicts a transition from a high-contrast symmetric phase to a
low-contrast non-symmetric phase on varying the d and H, and a new type of collective oscillations.

PACS numbers: 75.10.-b, 75.60, 75.70, 75.85

Bose-Einstein condensation (BEC), one of the
most intriguing macroscopic quantum phenomena,
has been observed in equilibrium systems of Bose
atoms, like 4He [1, 2], 87Rb [3] and 23Na [4]. Recent
experiments have extended the concept of BEC to
non-equilibrium systems consisting of photons [5]
and of quasiparticles, such as excitons [6], polari-
tons [7–9] and magnons [10, 11]. Among these,
BEC of magnons in films of Yttrium Iron Garnet
(YIG), discovered by the group of Demokritov [11–
17], is distinguished from other quasiparticle BEC
systems by its room temperature transition and
two-dimensional anisotropic properties. In par-
ticular, the spin-wave energy spectrum of a YIG
film shows two energetically degenerate minima.
Therefore it is possible that the system may have
two condensates in momentum space [18]. An ex-
periment by Nowik-Boltyk et al. [17] indeed shows
a low-contrast spatial modulation pattern, indicat-
ing that there is interference between the two con-
densates. Current theories [19–24] do not describe
the appearance of coherence or the distribution of
the two condensates.

This report points out that a complete descrip-
tion of BEC in microwave-pumped YIG films must
account for the 4th order interactions, includ-
ing previously neglected magnon-non-conserving
terms originating in the dipolar interactions. The
theory explains not only the appearance of coher-
ence but also quantitatively explains the low con-

trast of the experimentally observed interference
pattern. Moreover, the theory predicts that, on
increasing the film thickness d from a small value,
there is a transition from a high-contrast symmet-
ric phase S for d < dc, with equal numbers of con-
densed magnons filling the two minimum states, to
a low-contrast coherent non-symmetric phase NS
for d > dc, with different numbers of condensed
magnons filling the two minimum states. In com-
paratively thin films (d < 0.2µm) the same transi-
tion can be driven by an external magnetic field H.
For d > d∗, where d∗ is another critical thickness
(d∗ > dc), the sum of phases of the two conden-
sates changes from π to 0; for d = d∗ the system
is in a completely non-symmetric phase with only
one condensate, for which there is no interference.
In the experiment of Ref.[17] the film thickness d
exceeded d∗. We suggest that the phase transitions
may be identified by measuring the contrast of the
spatial interference pattern for various d and H.
We also predict a new type of collective magnetic
oscillation in this system and discuss the possibil-
ity of domain walls in non-symmetric phases.

Results

Phase Diagram.— We consider a YIG film of
thickness d with in-plane magnetic field H (see in-
set of Fig. 1). The 4-th order interaction of con-
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densate amplitudes reads [25–27]:

V̂4= A[c†Qc
†
QcQcQ + c†−Qc

†
−Qc−Qc−Q]

+2Bc†Qc
†
−Qc−QcQ

+C[c†QcQcQc−Q + c†−Qc−Qc−QcQ + h.c.]. (1)

Here c±Q and c†±Q are the annihilation and cre-
ation operators for magnons in the two conden-
sates located at the two energy minima (0,±Q) in
the 2-D momentum space (see. Fig.1). The coeffi-

FIG. 1. The magnon spectrum in the kz direction for
d = 5 µm and H = 1 kOe. The inset is a schematic
diagram of YIG film.

cients in Eq.(1) are:

A =−~ωM
4SN

[(α1 − α3)FQ − 2α2(1− F2Q)]

−DQ
2

2SN
[α1 − 4α2],

B =
~ωM
2SN

[(α1 − α2)(1− F2Q)− (α1 − α3)FQ]

+
DQ2

SN
[α1 − 2α2],

C =
~ωM
8SN

[(3α1 −
20

3
α3 + 3α2)FQ

+
16

3
α3(1− F2Q)] +

DQ2

SN
α3, (2)

with α1 = u4 + 4u2v2 + v4, α2 = 2u2v2 and α3 =
3uv(u2 + v2). Here, u and v are the coefficients of
Bogoliubov transformation (see the Methods sec-
tion for details). S = 14.3 is the effective spin, N is
the total number of spins in the film, M is the mag-
netization and ~ωM = γ4πM with gyromagnetic

ratio γ = 1.2 × 10−5eV/kOe. D is proportional
to the exchange constant and Fk = (1− e−kd)/kd.
Similar results for the coefficients A and B were
obtained in Ref.[19]. The coefficient C, which vi-
olates magnon number conservation, has not been
considered previously. Below we show that C is the
only source of coherence between the two conden-
sates. The three coefficients A, B and C, whose
values as functions of H are shown in Fig.2 for
two typical values of d, determine the distribu-
tion of condensed magnons in the two degenerate
minima. Ref.[19] assumed a symmetric phase with
condensed magnons in both minima having equal
amplitudes and equal phases. Later, Ref.[20] as-
sumed filling of only one minimum. More recently
Ref.[24] considered Josephson-like oscillations by
starting from two condensates with equal numbers
of magnons but different phases. Our theory pre-
dicts coherent condensates and the ratio of their
amplitudes with no additional assumptions.

In terms of condensate numbers N±Q and
phases φ±, the condensate amplitudes are c±Q =√
N±Qe

iφ± . Substituting them into eq.(1) we find:

V4 =A(N2
Q +N2

−Q) + 2BNQN−Q

+2C cos Φ(N
3
2

QN
1
2

−Q +N
1
2

QN
3
2

−Q). (3)

Clearly the dipole energy depends on the total
phase Φ = φ+ + φ−. To minimize this energy,
for C > 0 we have Φ = π and for C < 0 we have
Φ = 0. Fig.2 shows that the sign of C changes for
different d and H, which indicates a transition of
Φ between 0 and π. For both C > 0 and C < 0
the dipole energy establishes a coherence between
the two condensate amplitudes. In contrast to a
Josephson-like interaction, the sum rather than the
difference of the two condensate phases is fixed.

Since the total number of condensed magnons
Nc = NQ + N−Q is uniquely determined by the
pumping (see Methods), the energy has only a sin-
gle free variable, the so far unspecified difference
δ = NQ −N−Q. In terms of Nc and δ the conden-
sate energy eq.(3) is:

V4=
1

2

[
(A+B)N2

c − (B −A)δ2

−2|C|Nc
√
N2
c − δ2

]
. (4)

The ground state of the condensates depends on
the criterion parameter ∆, defined as

∆ ≡ A−B + |C|. (5)
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FIG. 2. Interaction coefficients A, B and C (in units of
mK/N, with N the total number of spins in the film)
as a function of magnetic field H for film thickness (a)
d = 1.0 µm and (b) d = 0.1 µm.

When ∆ > 0, δ = 0 minimizes the energy, so
the two minima have equal numbers of condensed
magnons. This is the symmetric phase, with
NQ = N−Q. When ∆ < 0, the minimum shifts

to δ2

N2
c

= 1 − C2

(B−A)2 . This is the non-symmetric

phase (S), with NQ 6= N−Q. The transition from
symmetric to non-symmetric phase (NS) at ∆ = 0
is of the second order. There is no metastable state
of these phases. At C = 0 one finds δ = ±Nc,
which corresponds to a completely non-symmetric
phase with only one condensate. The ground state
of the non-symmetric phase is doubly-degenerate,
corresponding to the two possible signs for δ. Fig.3
shows that for a film thickness of about 0.05 µm,
the symmetric phase is energy favorable up to
H = 1.2 T. For d = 0.08 µm, on increasing H to
about 0.6 kOe, there is a transition from symmet-
ric to non-symmetric phase. For the larger thick-
nesses d = 0.1 µm and d = 1 µm, the ground state
is non-symmetric for H > 0.3 kOe.

Fig.4 gives the phase diagram in (d,H) space.
It has three different regions, separated by two
critical transition lines, dc(H) and d∗(H), corre-
sponding to ∆ = 0 and C = 0, respectively. For
d = 0.13 − 0.16µ the system possesses re-entrant
behavior (NS Φ = π, to NS Φ = 0, to NS Φ = π)
as H increases. As shown below, measurement of
the contrast, or modulation depth [17], of the spa-
tial interference pattern permits identification of
the different condensate phases.

FIG. 3. Transition criterion ∆ from non-symmetric to
symmetric phase, ∆ (in units of mK/N), as a function
of magnetic field H for different thicknesses d.

FIG. 4. The phase diagram for different values of thick-
ness d and magnetic field H.

Zero Sound.— In two-condensate states the
relative phase δφ = φ+ − φ− is a Goldstone mode.
Its oscillation, coupled with the oscillation of the
number density δn = nQ − n−Q represents a new
type of collective excitation, which we call zero
sound (as in Landau’s Fermi liquid, this mode
is driven by the self-consistent field rather than
collisions). Solving a properly modified Gross-
Pitaevskii equation (see Methods), we find its spec-
trum. In the symmetric phase its dispersion rela-
tion is:

ω =

√
~2k4

4m2
+Nc∆

k2

m
. (6)
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The magnon effective mass is of the order of the
electron mass. The density of condensed magnons
nc = Nc/V is about 1018 cm−3 and ∆ ≈ 10
mK/N. The sound speed for small k in this case
is v0s =

√
Nc∆/m, which is about 100 m/s. Near

the transition point ∆ = 0, the velocity of this zero
sound goes to zero. For the non-symmetric case,
the spectrum is:

ω =

√
~2k4

4m2
κ+Nc(B −A)(κ− 1)

k2

m
, (7)

where κ ≡ (B−A)2

C2 . In the experiment of Ref. [17],
κ ∼ 104 and B − A = 8.4 mK/N , from which
we estimate a sound speed of 3 × 103 m/s. The
dispersions of zero sound for symmetric and non-
symmetric cases are shown in Fig.5. Note that
the range of applicability of the linear approxima-
tion decreases significantly for small C, where one
of the condensate densities is small and the phase
fluctuations grow.

FIG. 5. Dispersion of zero sound as a function of
wave vector in the direction of external magnetic field
for symmetric and non-symmetric cases, respectively.
For the non-symmetric case, we choose H = 1 kOe and
d = 5 µm.

Domain Wall.— Since the ground state of
the non-symmetric phase is doubly degenerate, it
can consist of domains with different signs of δ
separated by domain walls. The width w of such a

domain wall is of the order of
√

~2

2mNc|∆| . For the

data of experiment [17] we estimate that w ≈ 10
µm, and a domain wall energy per unit area of
about 10−9J/m2.

Discussion

The ground state wave function Ψ(z) gener-
ally is a superposition of two condensate ampli-
tudes Ψ(z) = (cQe

iQz + c−Qe
−iQz)/

√
V , where

c±Q =
√
N±Qe

iφ± and V is the volume of the
film. The spatial structure of Ψ(z) can be mea-
sured by Brillouin Light Scattering (BLS), with
intensity proportional to the condensate density
|Ψ|2 = nQ+n−Q+2

√
nQn−Q cos(2Qz+φ+−φ−).

In their recent experiment, Nowik-Boltyk el al
[17] observed the interference pattern associated
with the ground state. They found that the con-
trast of this periodic spatial modulation is far be-
low 100%; of the order 3%. The present theory
can quantitatively explain this result. In their ex-
periment, Ref.[17] employ d = 5.1 µm and H = 1
kOe. Then eq.(2) for A, B and C gives A = −0.168
mK/N , B = 8.218 mK/N and C = −0.203 mK/N ,
so ∆ < 0. This corresponds to the non-symmetric
phase, where for spontaneous symmetry-breaking
with δ = NQ − N−Q > 0 the ratio of the num-

bers of magnons in the two condensates is
N−Q
NQ
≈

C2

4(B−A)2 . The contrast is β =
|Ψ|2max−|Ψ|

2
min

|Ψ|2max+|Ψ|2min
. Since

C � B and N−Q � NQ, we have β ≈ 2
√

N−Q
NQ
≈

|C|
|B−A| . For the above values of A, B and C, β

is of order 2.4%, in good agreement with experi-
ment. The smallness of C (and A) relative to B
is associated with the large parameter d/l, where

l =
√

D
πγM is an intrinsic length scale of the sys-

tem and l ∼ 10−6 m. In terms of this parameter,
|C|
B ∼ ( ld )2/3.

In the experiment of [17] the contrast β reaches a
saturation value at a comparatively small pumping
power, corresponding to the appearance of BEC.
This agrees with our expression for β, which de-
pends only on film thickness d and magnetic field
H. By varying d and H, the contrast can be
changed. Specifically, in the symmetric phase,
β = 1; in the non-symmetric phase, β < 1; and
in the completely non-symmetric case with only
one condensate (d = d∗), β = 0. Therefore, mea-
surement of the contrast for different values of d
and H can give complete information about the
phase diagram of the system, for comparison with
the present theory.

Fig.6 plots C, ∆ and β as functions of the film
thickness d at fixed magnetic field H = 1 kOe. For
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small d the system is in the high-contrast sym-
metric state. On increasing d above dc = 0.07
µm, the sign of ∆ changes, corresponding to the
transition from the symmetric to the low-contrast
non-symmetric phase. As d further increases, to
d∗ = 0.17 µm, C changes sign, and the total phase
Φ changes from π to 0. Only at this point d∗ does
the zero-contrast phase (with only one condensate)
appear. Correspondingly, a characteristic cusp in
the contrast β appears near d∗.

FIG. 6. (a) Phase transition criterion ∆ and inter-
action coefficient C as functions of thickness d for
fixed magnetic field H = 1 kOe. (b) The contrast

β =
|Ψ|2max−|Ψ|

2
min

|Ψ|2max+|Ψ|2min
as a function of thickness d for

H = 1 kOe. S and NS denote symmetric and non-
symmetric phase, respectively.

To conclude, we have calculated the 4-th order
magnon-magnon interactions in the condensate of
a film of YIG, including magnon-non-conserving
terms that are responsible for the coherence
of two condensates. sFor ufficiently thin YIG
films (d < 0.1 µ) we predict a phase transition
from symmetric to non-symmetric phase when
the magnetic field exceeds the modest value
of 0.2 kOe. We also predict that within the
non-symmetric phase there is a thickness d∗(H)
where the modulation in the observed interference
pattern should totally disappear.

Methods

Magnon Spectrum.— In a YIG film with an
in-plane external magnetic field H, the magnon
dispersion has been studied extensively [28–30]. At
low energies, YIG can be described as a Heisenberg

ferromagnet with large effective-spin S = 14.3 [19,
24] on a cubic lattice. The Hamiltonian consists of
three parts:

H = −J
∑
〈i,j〉

Si · Sj +HD − γH
∑
i

Szi , (8)

the nearest neighbor exchange energy, the dipolar
interaction and the Zeeman energy. We take y to
be perpendicular to the film and the magnetic field
to be in the plane along z. It is convenient to char-
acterize the exchange interaction by the constant

D = 2JSa2 = 0.24 eVÅ
2
. The dipolar interaction

can be calculated using the method indicated in
Refs.[20, 30]. The competition between the dipo-
lar interaction and exchange interaction leads to
a magnon spectrum ωk with minima located at
the two points in 2D wave-vector space given by
k = (0,±Q) (i.e. along z), with an energy gap ∆0.
For film thickness d = 5 µm and magnetic field
H = 1 kOe, we find that Q = 7.5× 104 cm−1 and
∆0 = 2.7 GHz. In the experiment of [17] Q was
found to be about 3.5× 104 cm−1, i.e. about half
the predicted value. The reason for this may be
associated with a rather shallow energy minimum
as a function of wavevector. In such a situation
small corrections to our approximate formula can
have a large effect on the value of Q. The lowest
band of the magnon spectrum can be calculated
using the Holstein-Primakoff transformation [32],
which expresses the spin operator S in terms of
boson operators a and a†.

To second order in a and a†, the Hamiltonian
eq.(8) is:

H0 =
∑
k

[
Aka†kak +

1

2
Bkaka−k +

1

2
B∗ka

†
ka
†
−k

]
,(9)

with

Ak = γH0 +Dk2 + γ2πM(1− Fk) sin2 θ + γ2πMFk

Bk = γ2πM(1− Fk) sin2 θ − γ2πMFk (10)

where Fk ≡ (1 − e−kd)/kd and M is the magneti-
zation of the material (4πM = 1.76 kG). Here, θ
is the angle between the 2D wave vector k and
the magnetic field direction (z). H0 of eq.(9)
is diagonalized by the Bogoliubov transformation
ak = ukck + vkc

†
−k with uk = (Ak+~ωk

2~ωk )1/2 and

vk = sgn(Bk)(Ak−~ωk2~ωk )1/2, leading to the magnon
spectrum:

~ωk = (A2
k − |Bk|2)1/2. (11)
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Fig.1 gives the magnon spectrum along kz for typ-
ical values of thickness d and magnetic field H.

Number of condensed magnons Nc =
NQ + N−Q.— Experimentally, the spin lattice
relaxation time is of order 1 µs, whereas the
magnon-magnon thermalization time is of order
100 ns; the magnons are long-lived enough to equi-
librate before decaying, thus making BEC possible
[11]. After the thermalization time the pumped
magnons go to a quasi-equilibrium state with a
non-zero chemical potential µ. The number of
pumped magnons Np = N(T, µ)−N(T, 0), where
N(T, µ) = V

∑
k

1
e(ωk−µ)/T−1

, is determined by the

pumping power and the magnon lifetime. µ is a
monotonically increasing function of Np but can-
not exceed the energy gap ∆0. Therefore, on fur-
ther pumping µ = ∆0 and some of the pumped
magnons fall into the condensate. The equation
Npc = N(T,∆0) − N(T, 0) thus defines the crit-
ical line for condensation. Since ∆0 � T and
Np � N(T, 0) this equation can be satisfied at
a rather high temperature. The total number of
condensed particles is [11, 31]

Nc = Np−N(T,∆0)+N(T, 0) = N(T, µ)−N(T,∆0).
(12)

In exactly 2D systems BEC formally does not ex-
ist since in the continuum approximation the sum
in N(T, µ) diverges. However, for strong enough
pumping the chemical potential approaches ex-
ponentially close to the energy gap: ∆0 − µ ≈
∆0 exp(−Np/N0), where N0 = V Tm/~2. For
Np/N0 > ln(T/∆0) all pumped magnons occupy
only one or two states ±Q.

Eq.(12) determines only the total number of par-
ticles in the condensate. The distribution of the
condensate particles between the two minima re-
mains undetermined in the quadratic approxima-
tion. To resolve this issue we have shown that it is
necessary to consider the fourth order terms in the
Holstein-Primakoff expansion of the exchange and
dipolar energy. Observe that terms of third order
occur in this expansion of the dipolar interaction,
but since the total momentum must be zero, such
terms vanish for the condensate momenta (0,±Q).
Zero Sound.— We now provide details about

calculating the zero sound spectrum. We consider
small deviations from the static symmetric solution
nQ = n−Q = nc/2, φ+ = π − φ− = 0, so that
n±Q = nc/2 + δn± with δn+ = −δn− = δn/2 and

δφ+ = −δφ− = δφ/2. Then

E =

∫
dr
( ~2

2m
(|∇Ψ+|2 + |∇Ψ−|2))

+AV (|Ψ+|4 + |Ψ−|4 + 2BV |Ψ+|2|Ψ−|2

+CV (Ψ+Ψ− + Ψ∗+Ψ∗−)(|Ψ+|2 + |Ψ−|2)
)
,

On linearizing, the energy reads:

E=

∫
dr
( ~2

4mnc
|∇δn|2 +

~2nc
4m
|∇δφ|2 +

∆V

2
δn2
)
.

Using the commutation relation [δφ, δn] = i, and
the equation of motion i~δφ̇ = [δφ,H], we obtain:

~
∂δφ

∂t
= − ~2

2mnc
∇2δn+ ∆V δn, (13)

~
∂δn

∂t
=

~2

2m
nc∇2δφ. (14)

Taking Fourier transforms of the above two equa-
tions in coordinate and time, one arrives at the
dispersion relations in Eq.(6).
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