2 research outputs found

    Stochastic volatility models: calibration, pricing and hedging

    Get PDF
    Stochastic volatility models have long provided a popular alternative to the Black- Scholes-Merton framework. They provide, in a self-consistent way, an explanation for the presence of implied volatility smiles/skews seen in practice. Incorporating jumps into the stochastic volatility framework gives further freedom to nancial mathematicians to t both the short and long end of the implied volatility surface. We present three stochastic volatility models here - the Heston model, the Bates model and the SVJJ model. The latter two models incorporate jumps in the stock price process and, in the case of the SVJJ model, jumps in the volatility process. We analyse the e ects that the di erent model parameters have on the implied volatility surface as well as the returns distribution. We also present pricing techniques for determining vanilla European option prices under the dynamics of the three models. These include the fast Fourier transform (FFT) framework of Carr and Madan as well as two Monte Carlo pricing methods. Making use of the FFT pricing framework, we present calibration techniques for tting the models to option data. Speci cally, we examine the use of the genetic algorithm, adaptive simulated annealing and a MATLAB optimisation routine for tting the models to option data via a leastsquares calibration routine. We favour the genetic algorithm and make use of it in tting the three models to ALSI and S&P 500 option data. The last section of the dissertation provides hedging techniques for the models via the calculation of option price sensitivities. We nd that a delta, vega and gamma hedging scheme provides the best results for the Heston model. The inclusion of jumps in the stock price and volatility processes, however, worsens the performance of this scheme. MATLAB code for some of the routines implemented is provided in the appendix

    Change point detection in dynamic Gaussian graphical models: the impact of COVID-19 pandemic on the US stock market

    Get PDF
    Reliable estimates of volatility and correlation are fundamental in economics and finance for understanding the impact of macroeconomics events on the market and guiding future investments and policies. Dependence across financial returns is likely to be subject to sudden structural changes, especially in correspondence with major global events, such as the COVID-19 pandemic. In this work, we are interested in capturing abrupt changes over time in the dependence across US industry stock portfolios, over a time horizon that covers the COVID-19 pandemic. The selected stocks give a comprehensive picture of the US stock market. To this end, we develop a Bayesian multivariate stochastic volatility model based on a time-varying sequence of graphs capturing the evolution of the dependence structure. The model builds on the Gaussian graphical models and the random change points literature. In particular, we treat the number, the position of change points, and the graphs as object of posterior inference, allowing for sparsity in graph recovery and change point detection. The high dimension of the parameter space poses complex computational challenges. However, the model admits a hidden Markov model formulation. This leads to the development of an efficient computational strategy, based on a combination of sequential Monte-Carlo and Markov chain Monte-Carlo techniques. Model and computational development are widely applicable, beyond the scope of the application of interest in this work
    corecore