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ABSTRACT

Stochastic volatility models have long provided a popular alternative to the Black-

Scholes-Merton framework. They provide, in a self-consistent way, an explanation

for the presence of implied volatility smiles/skews seen in practice. Incorporating

jumps into the stochastic volatility framework gives further freedom to financial

mathematicians to fit both the short and long end of the implied volatility surface.

We present three stochastic volatility models here - the Heston model, the Bates

model and the SVJJ model. The latter two models incorporate jumps in the stock

price process and, in the case of the SVJJ model, jumps in the volatility process. We

analyse the effects that the different model parameters have on the implied volatility

surface as well as the returns distribution. We also present pricing techniques for

determining vanilla European option prices under the dynamics of the three models.

These include the fast Fourier transform (FFT) framework of Carr and Madan as

well as two Monte Carlo pricing methods. Making use of the FFT pricing framework,

we present calibration techniques for fitting the models to option data. Specifically,

we examine the use of the genetic algorithm, adaptive simulated annealing and a

MATLAB optimisation routine for fitting the models to option data via a least-

squares calibration routine. We favour the genetic algorithm and make use of it in

fitting the three models to ALSI and S&P 500 option data. The last section of the

dissertation provides hedging techniques for the models via the calculation of option

price sensitivities. We find that a delta, vega and gamma hedging scheme provides

the best results for the Heston model. The inclusion of jumps in the stock price and

volatility processes, however, worsens the performance of this scheme. MATLAB

code for some of the routines implemented is provided in the appendix.
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Chapter 1

Introduction

Financial mathematicians continuously seek to find stock price models that best explain

observed stock price dynamics. The most influential of these models has been the Black-

Scholes-Merton model (Black and Scholes [7]; Merton [42]) that was formulated in the

early 1970’s by the three men after whom the model is named. Much of the popularity

of the model came about as a result of its simplicity and the ease with which it provides

pricing and hedging solutions for option contracts. This simplicity, however, has many

drawbacks. Notably, the model enforces constant stock volatilities and permits only log-

normally distributed asset returns. Such dynamics have been shown to be inconsistent with

observations in actual financial markets. Market crashes have occurred far more frequently

than anticipated by these dynamics. One of the most notable crashes was that of 1987, which

led to the emergence of higher implied volatilities for in and out-of-the-money options than

at-the-money options. This was due to an increased awareness that the model was incapable

of describing the tail activities of stock price probability distributions. Such observations

have lead some financial experts to investigate certain stylised facts in financial markets —

that stock returns exhibit excess kurtosis and skewness, that volatility is non-constant and

tends to cluster and, increasingly, that many markets show signs of jumps in stock prices

(and even in the stock price volatility). This has lead to the exploration of stock price

models that exhibit such characteristics.

In the past two decades, much research has centred around incorporating stochastic

volatility as well as jump components into stock price models. Works by Bakshi et al.

[3], Bates [5], Broadie et al. [10], Duffie et al. [22], Gatheral [25] and Heston [28] — to name

but a few — have explored the merits and hindrances of using such models to explain stock

price dynamics. These models are complex and do not always yield closed form solutions

for option pricing. They are, however, very useful in allowing mathematicians to fit both

1



2

the short and long end of the implied volatility surface. They give a realistic explanation

for the presence of the implied volatility skew and are more robust in their descriptions of

stock price and volatility movements than the Black-Scholes model is.

In this dissertation, we examine three stochastic volatility models, namely the Heston

model, the Bates model and a stochastic volatility model with jumps in both the stock

price and variance processes (SVJJ model). Each model is an extension of the previous one,

starting with the Heston model, which comprises a stock price process similar to that of

the Black-Scholes price process, where the constant volatility term has been replaced by a

stochastic term evolving according to a mean-reverting diffusion process. The Bates model

then allows for the inclusion of a jump term in the stock price process, while the SVJJ model

also includes a jump term in the volatility process. Heston [28] saw the need to devise a

stochastic volatility model capable of explaining the skewness in the distributions of stock

price returns, as well as the empirically observed implied volatility skew. At the same time,

he desired a model that exhibited a “closed-form” (i.e. an integral representation) method

for pricing vanilla European options and appealed to Fourier transform techniques for this

purpose. This led to the formulation of the Heston model, which today is still extremely

popular due to its ability to replicate many observed market phenomena, as well as the

ease with which vanilla option prices can be computed under the dynamics of the model.

Bates [5] extended this model due to his observation that it was unable to fully explain the

implied volatility smile resulting from excess kurtosis in returns distributions. He argued

that adding jumps to the price process of the model made it more capable of this task and

thus more empirically consistent. In his analysis, he tested his model on Deutsche Mark

options data over the period 1984 to 1991 and found evidence supporting the need for jumps

in the stock price process of the model.

The paper by Duffie et al. [22] provides a comprehensive treatment on affine jump-

diffusion processes. A model that arises naturally from their analysis is the SVJJ model

and they compare the performance of this model to the Bates and the Heston models.

Calibrating the three models to option data, the authors find that the SVJJ model provides

the best fit to the data. Other works of particular interest to us are those by Bakshi et

al. [3], Broadie et al. [10] and Gatheral [25]. All three give insight into the addition of

jump terms to the stock price and variance processes and find, to varying degrees, that

the inclusion of jumps is necessary for stochastic volatility models to comply with market

observed phenomena.

The rest of this dissertation is structured as follows. In Chapter 2, we review the three

stochastic volatility models and show some of the effects that the models’ parameters have on
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stock price returns as well as on the implied volatility surface. Chapter 3 considers pricing

methods for the three models. More specifically, we examine the application of the fast

Fourier transform to vanilla European option pricing under these models. The framework

that we follow is that laid out by Carr and Madan [13]. We also consider the paper by

Broadie and Kaya [11], which provides a detailed analysis of two Monte Carlo methods that

can be applied to the models. Chapter 4 examines the calibration of the models to synthetic

as well as to market data. Specifically, we calibrate the models to option price data from the

South African All Share Index (ALSI) as well as the S&P 500 index. Options on the ALSI

are futures options and so our modelling of these options in a stochastic volatility setting

amounts to assuming that the dynamics of the underlying forward price are described by

one of the three stochastic volatility models analysed in this dissertation. In this chapter, we

compare three calibration methods based on three optimisation routines, namely the genetic

algorithm, adaptive simulated annealing and a non-linear least squares method, lsqnonlin,

available with the MATLAB software. Finally, chapter 5 examines hedging methods that

can be applied to vanilla call options whose underlying assets follow the dynamics of the

Heston, Bates and SVJJ models. Specifically, we focus on hedging methods using option

price sensitivities to the underlying parameters. Such an analysis would also be useful in

the setting of hedging methods for exotic options.

The purpose of this document is to provide a thorough overview of the three models and

pricing, calibration and hedging techniques that can be used to implement the models in

practical settings. As such, the dissertation is aimed more at practitioners than mathemati-

cians and a major emphasis of the work is on the numerical implementation of the numerous

techniques. We intend that the subject matter contained here will give readers a good un-

derstanding of the dynamics of the different models as well as a consistent framework for

approaching the core issues behind the implementation of these models

MATLAB was used extensively as a means of simulating the pricing, calibration and

hedging routines presented in this dissertation. Some of the code for these routines is pre-

sented in the appendix. All results were obtained via implementation of code in MATLAB

2010b (running in Microsoft Windows 7), on a desktop supercomputer incorporating an

Intel Core i7-970 3.2GHz hexacore CPU, 24GB DDR3 RAM and a C2050 Tesla GPU.

Finally, it is important to note some topics that are beyond the scope of this dissertation.

Investigations into these topics in further research reports would provide valuable extensions

to our work. We have not considered no-arbitrage bounds for the market implied volatility

surfaces in this project. In practice, these are very important to ensure that the calibrated
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surfaces are free from arbitrage. Such bounds are usually set up to ensure that call spreads,

butterfly spreads and calendar spreads cannot be constructed off the surfaces to produce

arbitrage strategies. An extension of the subject matter in Chapter 4 would be to explore

the literature on such no-arbitrage bounds and thus further the investigation into calibrat-

ing stochastic volatility models to South African implied volatility data. A particularly

useful paper for such an investigation is by Carr and Madan [14]. Moreover, we have not

considered the temporal stability of option price parameters, nor have we considered the

fitting of models to historical data on the underlying asset. Instead, we have examined the

calibration of stochastic volatility models to implied volatility surfaces at single points in

time. Obviously, this only gives us an idea of the (risk-neutral) dynamics of the underlying

asset process at that time. A valuable extension to this approach would be to evaluate how

model parameters change over time and to examine risk premia in the market. Lastly, we

have not explored other methods for dealing with non-constant volatility. Such alternatives

include local volatility models (see, for example, Gatheral [25]) and GARCH type models

(see, for example, Pakel et al. [46]). These alternatives are explored extensively in the finan-

cial mathematics literature and provide different approaches for dealing with the volatility

surface in option markets.



Chapter 2

Stochastic Volatility Models

2.1 The Heston Model

The Heston model was introduced in the 1993 paper by Steven Heston [28]. The model

specifies the following risk-neutral stock price dynamics:

dSt = rStdt+
√
VtStdW̃

(1)
t (2.1)

dVt = κ (θ − Vt) dt+ σv
√
VtdW̃

(2)
t (2.2)

dW̃
(1)
t dW̃

(2)
t = ρdt, (2.3)

where r is the risk-neutral rate of return, and W̃
(1)
t and W̃

(2)
t are two correlated Brownian

motions under the risk-neutral measure. Here we consider only the risk-neutral dynamics of

the stock price process. In chapter 5, we will explore the existence of equivalent martingale

measures and examine the transformation from real-world dynamics to those under the risk-

neutral measure. From the specification above, we can see that the Heston model is a pure

diffusion model — it does not permit jumps in the stock price or the variance processes.

The stock price process is similar to that specified under the Black-Scholes model. Here,

however, the constant volatility term that appears in the Black-Scholes model has been

replaced by a stochastic one which follows the same mean-reverting square root process

used by Cox et al. [21] in their famous interest rate model. Figure 2.1 gives an example of

ten Heston stock price paths.

The main parameters of interest in the Heston Model are κ, ρ and σv. The rate at which

the variance process reverts to its long run average θ is given by the parameter κ. High

values of κ essentially turn the stochastic volatility into a time dependent deterministic one,

since any deviations in the variance from θ are immediately pulled back. The parameter ρ

affects the skewness of the returns distribution (see Figure 2.2) and hence the skewness in

5



2.1 The Heston Model 6

the implied volatility smile. Negative values of ρ induce a negative skewness in the returns

distribution since lower returns will be accompanied by higher volatility which will stretch

the left tail of the distribution. The reverse is true for positive correlation. The parameter

σv affects the kurtosis of the returns distribution and hence the steepness of the implied

volatility smile (see Figure 2.3). Large values of σv cause more fluctuation in the volatility

process (provided κ is not too large) and hence stretch the tails of the returns distribution

in both directions. Figure 2.4 shows the effects that ρ and σv have on the implied volatility

surface.

Figure 2.1 Sample Heston stock price paths for S0 = 100, κ = 1.5, θ = V0 = 0.04,
σv = 0.2, ρ = 0.8. The plot was produced using Euler Monte Carlo methods with
1000 time steps.
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Figure 2.2 The effect of ρ on the distribution of stock price returns under the
Heston model. The plot was produced using Euler Monte Carlo methods with
100,000 paths and 100 time steps. We can see how negative values of ρ induce
negative skewness in the stock price returns distribution and vice versa.

Figure 2.3 The effect of σv on the distribution of stock price returns under the
Heston model. The plot was produced using Euler Monte Carlo methods with
100,000 paths and 100 time steps. We can see how larger values of σv increase the
kurtosis in the returns distribution.
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Figure 2.4 The effect of ρ and σv on the Heston implied volatility surface. The
figure was produced using FFT pricing techniques. The top three plots show how
the skewness in the volatility surface changes for positive and negative values of
ρ. The bottom three plots show how the steepness increases for increasing values
of σv.
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2.2 The Bates Model

The Bates model was introduced by David Bates [5] in his 1996 paper and is an extension of

the Heston model to include jumps in the stock price process. The model has the following

risk-neutral dynamics defining the evolution of St:

dSt = (r − λµJ)Stdt+
√
VtStdW̃

(1)
t + JStdÑt (2.4)

dVt = κ (θ − Vt) dt+ σv
√
VtdW̃

(2)
t (2.5)

dW̃
(1)
t dW̃

(2)
t = ρdt. (2.6)

Appendix A gives some intuition for the form of the above stock price process. The

Figure 2.5 Sample Bates stock price paths for S0 = 100, κ = 1.5, θ = V0 = 0.04,
σv = 0.2, ρ = 0.8, λ = 3, µS = −0.05, σS = 0.0001. The plot was produced using
Euler Monte Carlo methods with 1000 time steps.

volatility process Vt is the same as that in the Heston model and the driving Brownian

motions in the two processes have an instantaneous correlation equal to ρ. The process Ñt

represents a Poisson process under the risk neutral measure, with jump intensity λ. It is

independent of the two Brownian motions in the stock price and variance processes. The

percentage jump size of the stock price is dictated by the random variable J , with

1 + J ∼ log-normal
(
µS , σ

2
S

)
,

where the relationship between µS and µJ is given by

µJ = exp

{
µS +

σ2
S

2

}
− 1.

Figure 2.5 gives an example of ten Bates stock price paths. It is apparent that adding a

jump term to the stock price process produces more volatile price movements than those

displayed by the Heston model.
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Since the Bates model is an extension of the Heston model, the parameters κ, ρ and σv

have the same effect on the returns distribution and implied volatility surface as they do

in the Heston model. In addition to these, the parameters defining the jump term in the

stock-price process are of particular interest. The parameter µS influences the skewness of

the stock price returns distribution, as can be seen in Figure 2.6. Positive values of µS lead

to a positive skew in the distribution of returns. Negative values of µS have the opposite

effect. The parameter σS affects the kurtosis of the stock price returns distribution. Larger

values of σS increase the variance of stock price jump sizes and hence increase the kurtosis

of the returns distribution. The effect of σS on the returns distribution can be seen in

Figure 2.7. The Poisson process intensity parameter λ dictates how frequently jumps occur

and its effect on the distribution of stock price returns can be seen in Figure 2.8. Larger

values of λ increase the occurrence of jumps in the stock price process and this raises the

overall level of volatility in the stock price. As a result, λ affects the kurtosis in the returns

distribution. Figures 2.9 and 2.10 show the effects that µS , σS and λ have on the implied

volatility surface. Note, specifically, how the jump parameters influence the short end of

the skew more than they influence the long end. This is one of the advantages of including

jumps in a stock price model — the jump terms allow for more flexibility in fitting the short

end of the skew. Combining jumps and stochastic volatility makes it easier to fit both the

long and short end of the skew.

Figure 2.6 The effect of µS on the distribution of stock price returns under the
Bates model. The plot was produced using Euler Monte Carlo methods with
100,000 paths and 100 time steps. The plot demonstrates how negative values of
µS produce negative skewness in the returns distributions under the Bates model.
The reverse holds for positive values of µS .
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Figure 2.7 The effect of σS on the distribution of stock price returns under the
Bates model. The plot was produced using Euler Monte Carlo methods with
100,000 paths and 100 time steps. We can see how larger values of the parameter
increase the kurtosis in the returns distribution.

Figure 2.8 The effect of λ on the distribution of stock price returns under the
Bates model. The plot was produced using Euler Monte Carlo methods with
100,000 paths and 100 time steps. It shows that larger values of λ yield more
kurtosis in the returns distribution.
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Figure 2.9 The effect of µS and σS on the Bates implied volatility surface. The
figure was produced using the FFT pricing framework. The top three plots show
how the skewness in the volatility surface changes for positive and negative values
of µS . The bottom three plots show how the steepness increases for increasing
values of σS .

Figure 2.10 The effect of λ on the Bates implied volatility surface. The figure
was produced using the FFT pricing framework. The plots show how the level of
volatility increases as λ increases.
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2.3 The Double Jump Stochastic Volatility Model

A natural extension of the Bates model is to include jumps in the volatility process in

addition to those in the stock price process. Intuitively, it makes sense that a jump in

the stock price process should trigger a correlated jump in the volatility process in that

sudden, large movements in the stock price would cause increased market anxiety around

that stock. As a result, we review the double jump stochastic volatility model (SVJJ) in

this subsection.

Works by Broadie et al. (BCJ) [10]; Broadie and Kaya (BK) [11]; Duffie et al. (DPS)

[22] and Gatheral [25] all review this model. In particular, the works by BCJ and Gatheral

explore the merits and drawbacks of the SVJJ model over Bates-style models. BCJ argue

in favour of a stochastic volatility model that incorporates jumps in both the stock price

and variance processes, while Gatheral finds that a stochastic volatility model with jumps

in the stock price process only produces the best fit to the implied volatility surface. In

their analysis, BCJ use option futures data on the S&P 500 over the period from 1987 to

2003, a much longer period than many of the other empirical studies of this kind. They

argue that since jumps occur relatively infrequently in stocks, it is wise to use an extended

period of observation in order to reduce bias in the data. They also propose that any jump

in the stock price should trigger a simultaneous jump in the underlying volatility process.

The model that they consequently advocate is the SVCJ model — a stochastic volatility

model with contemporaneous jumps in the stock price and its volatility. Notably, the simple

stochastic volatility model (Heston) and the stochastic volatility model with jumps in the

stock price process only (Bates) are specific cases of this model.

In our formulation of the SVJJ model, we follow the framework by DPS [22] closely. This

model has the following risk-neutral dynamics1:

dSt = (r − λµJ)Stdt+
√
VtStdW̃

(1)
t + JStdÑt (2.7)

dVt = κ (θ − Vt) dt+ σv
√
VtdW̃

(2)
t + ZdÑt (2.8)

dW̃
(1)
t dW̃

(2)
t = ρdt. (2.9)

Again, Ñt represents a Poisson process under the risk neutral measure, with jump intensity

λ. The jump terms in the model are defined as follows:

Z ∼ Exponential (µV )

(1 + J) | Z ∼ log-normal
(
µS + ρJZ, σ

2
S

)
,

1See Appendix A for an explanation of the form of the stock price process in jump-diffusion models under

risk-neutral dynamics.
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Figure 2.11 Sample SVJJ stock price paths for S0 = 100, κ = 1.5, θ = V0 = 0.04,
σv = 0.2, ρ = 0.8, λ = 3, µS = −0.05, σS = 0.0001, ρJ = −0.4, µV = 0.01. The
plot was produced using Euler Monte Carlo methods with 1000 time steps.

where

µJ =
exp

{
µS +

σ2
S
2

}
1− ρJµV

− 1.

Figure 2.11 gives an example of ten paths produced using the SVJJ model. These paths

exhibit even more volatility than that displayed by the Bates stock paths.

The parameters of interest in this model are ρJ and µV , since the other eight parameters

are the same as those in the previous models. The parameter ρJ impacts on the skewness of

the returns distribution in much the same way that ρ does. The effects of ρJ are, however,

more prevalent in the short term. Positive values for the parameter will cause jumps in

the volatility process to augment those in the stock price process, inducing a positive skew

in stock price returns distributions. The reverse will occur for negative values of ρJ . This

is displayed by Figure 2.12. The effects of µV on the stock price returns distribution are

seen in Figure 2.13. Since µV affects the size of the jumps in the volatility process, larger

values for the parameter raise the level of volatility in the stock price. This also increases

the kurtosis of the returns distribution. Figure 2.14 shows how the parameters ρJ and µV

impact on the SVJJ implied volatility surface.
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Figure 2.12 The effect of ρJ on the distribution of stock price returns under
the SVJJ model. The plot was produced using Euler Monte Carlo methods with
100,000 paths and 100 time steps. In a similar way to the parameter ρ — the
effects of which are shown under the Heston model subsection in this chapter —
ρJ can be seen to influence the skewness of the returns distribution.

Figure 2.13 The effect of µV on the distribution of stock price returns under
the SVJJ model. The plot was produced using Euler Monte Carlo methods with
100,000 paths and 100 time steps. Larger values of µV clearly increase the kurtosis
in the returns distribution.
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Figure 2.14 The effect of ρJ and µV on the SVJJ implied volatility surface. The
figure was produced using the FFT pricing methodology. The top three plots
show how the skewness in the volatility surface changes for positive and negative
values of ρJ . The bottom three plots show how the steepness and level of volatility
increase for increasing values of µV .
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2.4 Price Path Comparisons for the Heston, Bates and SVJJ

Models

In this section, we compare the three models considered above and examine JSE Top 40

and S&P 500 index data in our consideration of the merits and drawbacks of the different

models. Figure 2.21 gives a comparison of stock price paths for the different models2. To

give a meaningful comparison, we have ensured that the same random numbers and same

jump times are used to generate all the paths. The most striking aspect of the plot is how

the inclusion of jumps increases the potential for large stock price movements. The Bates

model paths, and even more so, the SVJJ model paths jump at numerous points in the 4

year time horizon. This allows for large rises and drops in the stock price over small intervals

in time. The Heston model, on the other hand produces a much more subdued price path

than the other two models produce. Thus, the Bates and SVJJ models are able to generate

returns distributions with more skewness and more kurtosis than those produced by the

Heston model. This is especially true in the short term. The exclusion of jumps from the

Heston model clearly limits the price movements that can be generated by the model.

The plot of the JSE Top 40 index as well as that of the S&P 500 index (Figures 2.15 and

2.18) both give evidence of large movements, as well as jumps in the index values. Notably,

the market crash of 1987 is highlighted by the sharp drop in the index value in Figure 2.18.

Such movements might quite possibly be modelled by the presence of jumps in the process

driving the index value. The plot of the S&P 500 index also shows that there was a large

decline in the value of the index between 2000 and 2003 and both index plots highlight the

recent market crash. Particularly, we see rapid declines in both indices around the middle

of 2008. At other times, the index plots hint at relatively calm market behaviour, with few

large value movements. Stochastic volatility models that incorporate jump processes can

capture these characteristics by allowing for periods of market stability and also periods of

instability characterised by large movements and even jumps in stock prices. We can see

such price movements in the Bates and SVJJ stock paths in Figure 2.21.

Looking further at the volatility processes of the different models, displayed in Figure 2.22,

we see that the Heston and the Bates models produce identical movements in the stock price

volatility. The SVJJ model, on the other hand, allows for jumps in the volatility process

and this induces large, sudden movements in the process. All three plots also illustrate that

high volatility values and low volatility values tend to cluster together. Specifically, the

2Note that the parameters chosen to produce these plots are based on reasonable results observed in the

literature on such models. Different parameters would yield different plots to the ones observed here.
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SVJJ volatility path demonstrates that when a jump is experienced, the level of volatility

remains high for a while, before reverting to a mean level. This induces the clustering

effect seen in the return time series plots for the models (Figure 2.23). Such characteristics

can also be observed in Figures 2.16 and 2.19, induced by periods of high and low market

volatility. The Black-Scholes model, conversely, does not exhibit any of these features. This

illustrates, to an extent, the inability of the Black-Scholes model to produce empirically

consistent stock price movements and returns distributions and gives credence to the use of

stochastic volatility models, rather than the Black-Scholes model, in modeling stock price

dynamics.

We have also seen the ability of the three stochastic volatility models to produce re-

turns distributions which are skewed and have excess kurtosis. The Black-Scholes model,

on the other hand, is only capable of producing returns which are normally distributed.

Considering Figures 2.17 and 2.20, it is clear that the returns on these two indices are not

normally distributed. Rather, they both seem to give evidence of distributions that are

slightly negatively skewed and which have fat tails.

All these observations indicate that stochastic volatility models are far more capable of

replicating market dynamics than the Black-Scholes model is able to. The inclusion of

stochastic volatility and jumps in stock price models is justified by market phenomena such

as volatility clustering and market crashes. It consequently seems natural that the topic of

stochastic volatility and jumps should be explored further for pricing and hedging purposes.

Specifically in less liquid markets, such as exotic options markets, it seems that it would be

wise to use such models to obtain more reliable prices and better hedging strategies. It is

largely these observations, as well as numerous empirical studies (Bakshi et al. [3], Bates

[5], Broadie et al. [10], Duffie et al. [22], Gatheral [25], Heston [28]) of stochastic volatility

and jumps in the price and volatility paths of stocks that has sparked our interest in this

topic.



2.4 Price Path Comparisons for the Heston, Bates and SVJJ Models 19

Figure 2.15 JSE Top 40 in-
dex (TOPI) plot between 1
January 2000 and 31 Decem-
ber 2009. In the plot, we have
set the starting value of the
index to 100. The plot gives
evidence of large price move-
ments, particularly from 2008
onwards.

Figure 2.16 Daily returns
corresponding to the JSE Top
40 index plot above. Evidence
of volatility clustering is evi-
dent in the plot. The plot also
shows a number of jumps in
stock price returns and a large
amount of volatility around
the 2008 market crash. Such
characteristics can be cap-
tured by stochastic volatility
and jump processes.

Figure 2.17 Comparison of
the distribution of daily re-
turns on the JSE Top 40 in-
dex and the normal distribu-
tion. We see here that the dis-
tribution of returns on the in-
dex has fatter tails and a taller
peak than the normal distribu-
tion has. The returns distribu-
tion also seems to be slightly
negatively skewed.
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Figure 2.18 S&P 500 index
plot between 1 January 1987
and 31 December 2010. In the
plot, we have set the starting
value of the index to 100. The
plot gives evidence of large
price movements, possibly due
to the effects of stochastic
volatility and jumps.

Figure 2.19 Daily returns
corresponding to the S&P 500
index plot above. We can see
evidence of volatility cluster-
ing as well as price jumps in
the returns distribution. The
stock market crashes of 1987
and 2008 stand out in the
plot.

Figure 2.20 Comparison of
the distribution of daily re-
turns on the S&P 500 index
and the normal distribution.
We see here that the distri-
bution of returns on the in-
dex has fatter tails and a taller
peak than the normal distribu-
tion has. The returns distribu-
tion is also slightly negatively
skewed. Such characteristics
can be produced by stochastic
volatility models.
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Figure 2.21 Stock price paths
for the Black-Scholes, Heston,
Bates and SVJJ models. The
same random numbers were
used to generate all the paths.
Model parameters: κ = 1.5,
θ = V0 = 0.008, σv = 0.2,
ρ = −0.8, λJ = 3, µS = −0.05,
σS = 0.0001, ρJ = −0.4 and
µV = 0.01. The SVJJ and
Bates paths exhibit the great-
est price movements, while the
Heston and Black-Scholes paths
are more subdued.

Figure 2.22 Volatility paths
corresponding to the above
stock price paths. We can
clearly see jumps in the SVJJ
volatility path, resulting in
larger volatility movements
than in the Bates and Hes-
ton models. The three volatil-
ity paths corresponding to
the three stochastic volatil-
ity models all show signs of
volatility clustering. The
Black-Scholes volatility path is
obviously flat.

Figure 2.23 Returns corre-
sponding to the stock price
paths above. The SVJJ
and Bates paths show evi-
dence of jumps in stock re-
turns. All three stochas-
tic volatility models give signs
of volatility clustering. This
makes the models more re-
alistic than the Black-Scholes
model, which exhibits none of
these characteristics.



Chapter 3

Pricing Methods

One of the main advantages of the Black-Scholes-Merton framework (Black and Scholes

[7]; Merton [42]) is that it allows for the derivation of closed form option pricing formulas

for vanilla options as well as many types of exotic options. The models considered in the

previous chapter do not provide pricing solutions quite as easily. Many authors (notably

Bates [5], Duffie et al. [22] and Heston [28]) have derived integral representations for vanilla

European option prices in such situations through the use of partial differential equations

and Fourier transform techniques. The use of these solutions, however, often requires the

implementation of somewhat complex numerical methods. A number of the more popular

methods include the fast Fourier transform (FFT) and direct integration schemes. As

an alternative to deriving and implementing closed form pricing techniques, Monte Carlo

methods are also very popular and robust tools for finding option prices under the dynamics

of stochastic volatility models.

The application of the FFT to option pricing was made popular by Carr and Madan [13]

and enables the rapid computation of option prices across a large grid of strikes. The ability

of the Carr and Madan method to simultaneously compute prices for numerous options with

equally spaced strike prices is one of its major computational advantages.

A review of direct integration methods is given by Gatheral [25] as well as Zhu [59]. A

common way of implementing this method is to express the price of (for example) a vanilla

call option as

C (S0,K, T ) = S0P1 −Ke−rTP2,

where, in a similar way to the Black-Scholes formula, P1 and P2 represent the delta and

exercise probability of the option respectively. The terms P1 and P2 involve complicated

integral expressions which can be computed using numerical integration techniques, such

22
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as the trapezoidal rule, Simpson’s rule or Gaussian quadrature methods. The method of

Attari [1] can also be used with direct integration schemes.

Monte Carlo methods are very popular in mathematical finance. They allow for the pric-

ing of options by simulating stock paths under the risk neutral measure and averaging the

discounted option payoffs produced by the different paths. These methods are particularly

useful in the valuation of exotic options, as well as for the computation of option price

sensitivities. Their popularity arises largely as a consequence of their ability to simulate

stock paths of even the most complicated stock price models. They can provide option

pricing and hedging solutions when no closed form alternatives are available. A drawback

here, however, is that they are usually much slower than methods such as the FFT. They

are also subject to statistical error: a problem that does not plague the FFT method.

We choose to focus specifically on the Carr and Madan FFT pricing method and Monte

Carlo methods in the sections that follow. The FFT method by Carr and Madan is very

fast and easy to implement and its ability to compute numerous option prices at once makes

it useful as a calibration tool.

3.1 The Carr and Madan Fast Fourier Transform Pricing

Framework for Vanilla European Call Options

The application of the FFT to vanilla option pricing gives a method of rapidly computing

option prices. This method can be used whenever the characteristic function of the under-

lying stock price process can be derived analytically. Consequently, it has great potential

for computing real time option prices, where the dynamics of the stock price process are

more complex than those of geometric Brownian motion. We follow the method of Carr

and Madan [13] in our application of the FFT to vanilla option pricing.

3.1.1 Introductory Definitions

Definition 1 (The Fourier Transform). The Fourier transform of a square-integrable func-

tion, g (x), is given by:

ĝ (u) =

∫ ∞
−∞

eiuxg (x) dx. (3.1)

Definition 2 (The Inverse Fourier Transform). The inverse Fourier transform of a square-

integrable function, ĝ (u), is given by:

g (x) =
1

2π

∫ ∞
−∞

e−iuxĝ (u) du. (3.2)
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The Fourier transform of the function g (x) is essentially the transformation of the

function from the real domain, to the frequency domain, denoted by u. Furthermore, in

order to recover the function g (x) from the Fourier transform, we apply the inverse Fourier

transform. Next we look at the Fourier transform of the probability density function of a

random variable, which is of particular importance to the implementation of the FFT.

Definition 3 (The Characteristic Function). The characteristic function of a random vari-

able, XT , is given by:

φXT (u) = E
[
eiuXT

]
=

∫ ∞
−∞

eiuXT p (XT ) dXT , (3.3)

where p (XT ) is the probability density function of XT at some time T > 0.

3.1.2 The Fourier Transform for ATM and ITM Call Options

The first stage of the application of the FFT to call option pricing is to find the Fourier

transform of the call pricing function. When evaluating the Fourier transform of this func-

tion, we follow one method for in-the-money (ITM) and at-the-money (ATM) options and

a slightly different method for out-of-the-money (OTM) options. Suppose that the pricing

function of a European call option is given by cT (k). Here, we denote the maturity of the

option by T and the log-strike by k. Furthermore, define the price of the underlying stock

at the maturity of the option to be ST and let the risk-neutral density of sT = log (ST ) be

given by the function p̃ (sT ). Then

cT (k) =

∫ ∞
k

e−rT
(
esT − ek

)
p̃ (sT ) dsT . (3.4)

Evaluating the limit as k → −∞, we see that

lim
k→−∞

cT (k) = lim
k→−∞

∫ ∞
k

e−rT
(
esT − ek

)
p̃ (sT ) dsT

= S0.

Consequently, cT (k) does not converge to 0 in the limit and is thus not square-integrable.

Since we cannot apply the Fourier transform to a function which is not square-integrable,

we need to consider a new call pricing function which is square-integrable. We do this by

applying a dampening factor to cT (k) to get

CT (k) := eαkcT (k) , (3.5)

where α is a positive constant.
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The Fourier transform of CT (k) is given by:

ψT (u) =

∫ ∞
−∞

eiukCT (k) dk

=

∫ ∞
−∞

e−rT eiukeαk
∫ ∞
k

(
esT − ek

)
p̃ (sT ) dsTdk

=

∫ ∞
−∞

e−rT p̃ (sT )

∫ sT

−∞

(
esT+αk − e(α+1)k

)
eiukdkdsT

(by changing the order of integration)

=

∫ ∞
−∞

e−rT p̃ (sT )

∫ sT

−∞

(
esT+(α+iu)k − e(α+1+iu)k

)
dkdsT

=

∫ ∞
−∞

e−rT p̃ (sT )

[
eisT (u−(α+1)i)

(α+ iu) (α+ 1 + iu)

]
dsT

=
e−rT

(α+ iu) (α+ 1 + iu)

∫ ∞
−∞

ei(u−(α+1)i)sT p̃ (sT ) dsT

=
e−rTφsT (u− (α+ 1) i)

(α+ iu) (α+ 1 + iu)
. (3.6)

Here, φsT (·) denotes the characteristic function (under the risk-neutral measure) of the

log-stock price. Now, considering the inverse Fourier transform of CT (k), we see that

eαkcT (k) = CT (k)

=
1

2π

∫ ∞
−∞

e−iukψT (u) du

and hence that

cT (k) =
e−αk

2π

∫ ∞
−∞

e−iukψT (u) du

=
e−αk

π

∫ ∞
0

Re
[
e−iukψT (u)

]
du. (3.7)

The above holds because Re
[
e−iukψT (u)

]
is an even function (See Carr and Madan [13],

Lee [39]). Consequently, the price of a European call option is given by

cT (k) =
e−αk

π

∫ ∞
0

Re

[
e−iuk

e−rTφsT (u− (α+ 1) i)

(α+ iu) (α+ 1 + iu)

]
du. (3.8)

Choosing an Appropriate Value for α

We include the factor eαk when performing the Fourier transform of our call pricing function

to ensure that the consequent modified call pricing function is integrable over negative values

of k. Since α is positive, however, this factor worsens the integrability of the modified call

pricing function over positive values of k. In order to ensure that the modified call pricing
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function is integrable over all values of k, Carr and Madan [13] state that it is sufficient

to ensure that the Fourier transform of our modified call pricing function is finite at 0.

From equation (3.6), it can be seen that this will be so provided that φsT (− (α+ iu)), and

hence Ẽ
[
Sα+1
T

]
are finite (note that Ẽ [·] is the expectation operator under the risk-neutral

measure). An upper bound for α can now be found by considering the analytical expression

for the characteristic function. A popular choice for the value of α is a quarter of this upper

bound.

Truncating the Call Pricing Function

In order to calculate option prices from equation (3.8), we need to use numerical methods

to compute the integral in that equation. Consequently, we need to truncate the integral

in (3.8) at some point a. This will leave us with an approximation for cT (k) given by

ĉT (k) =
e−αk

π

∫ a

0
Re

[
e−iuk

e−rTφsT (u− (α+ 1) i)

(α+ iu) (α+ 1 + iu)

]
du. (3.9)

Now, the absolute error of this approximation will be

|cT (k)− ĉT (k)| =

∣∣∣∣e−αkπ
∫ ∞

0
Re
[
e−iukψT (u)

]
du− e−αk

π

∫ a

0
Re
[
e−iukψT (u)

]
du

∣∣∣∣
=

∣∣∣∣e−αkπ
∫ ∞
a

Re
[
e−iukψT (u)

]
du

∣∣∣∣ .
To minimise this error, we need to choose a value of a large enough so that the value of

this integral is small. Carr and Madan [13] show that, for some desired truncation error, ε,

a must be chosen such that

a >
e−αk

π

√
A

ε
,

where A is a constant chosen such that Ẽ
[
S

(α+1)
T

]2
≤ A. For a more in depth analysis of

this method, see Carr and Madan [13] and Pillay [47].

3.1.3 The Fourier Transform for OTM Call Options

The method for evaluating call option prices given by equation (3.8) is effective for ATM

and ITM options. When pricing fairly deep OTM call options which are close to maturity,

however, the integrand in (3.8) becomes quite oscillatory. This is as a result of such op-

tions tending to their intrinsic values as they near maturity (Carr and Madan [13]). As a

consequence, Carr and Madan suggest a different approach in the case of OTM options to

circumvent this problem. They consider the “time value” of an OTM option.
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The time value of an option is equal to the difference between the value of the option and

its intrinsic value. Since an OTM option has an intrinsic value of 0, its time value is simply

equal to its value. Carr and Madan thus consider a function, zT (k), which takes the value

of either a T maturity call or put option (with log-strike k), whichever is out-of-the-money

at inception. Defining ζT (u) to be the Fourier transform of zT (k), we can obtain OTM

option prices through the application of the inverse Fourier transform given by:

zT (k) =
1

2π

∫ ∞
−∞

e−iukζT (u) du. (3.10)

Now, zT (k) is defined by the following relation (assuming, for simplicity, that S0 = 1):

zT (k) = e−rT
∫ ∞
−∞

[(
ek − esT

)
1{sT<k,k<0}

]
p̃ (sT ) dsT

+ e−rT
∫ ∞
−∞

[(
esT − ek

)
1{sT>k,k>0}

]
p̃ (sT ) dsT . (3.11)

Applying the Fourier transform to zT (k)

ζT (u) =

∫ ∞
−∞

eiukzT (k) dk

=

∫ ∞
−∞

eiuke−rT
∫ ∞
−∞

[(
ek − esT

)
1{sT<k,k<0}

]
p̃ (sT ) dsTdk

+

∫ ∞
−∞

eiuke−rT
∫ ∞
−∞

[(
esT − ek

)
1{sT>k,k>0}

]
p̃ (sT ) dsTdk

=

∫ 0

−∞
eiuke−rT

∫ k

−∞

(
ek − esT

)
p̃ (sT ) dsTdk

+

∫ ∞
0

eiuke−rT
∫ ∞
k

(
esT − ek

)
p̃ (sT ) dsTdk

=

∫ 0

−∞
e−rT

∫ 0

sT

eiuk
(
ek − esT

)
p̃ (sT ) dkdsT

+

∫ ∞
0

e−rT
∫ sT

0
eiuk

(
esT − ek

)
p̃ (sT ) dkdsT

(by changing the order of integration)

= e−rT
[

1

1 + iu
− erT

iu
− φsT (u− i)

u (u− i)

]
. (3.12)

As with the transform for ITM and ATM options, we need to include a dampening factor

here. When k = 0 and as T approaches 0, zT (k) becomes quite oscillatory and including

the factor sinh (αk) helps to counteract this. The Fourier transform of sinh (αk) zT (k) is

given by:

γT (u) =

∫ ∞
−∞

eiuk sinh (αk) zT (k) dk

=
ζT (u− iα)− ζT (u+ iα)

2
. (3.13)
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Hence, by making use of the inverse Fourier transform, the price of an OTM option is given

by:

zT (k) =
1

2π sinh (αk)

∫ ∞
−∞

e−iukγT (u) du

=
1

π sinh (αk)

∫ ∞
0

Re
[
e−iukγT (u)

]
du. (3.14)

3.1.4 Using the Fast Fourier Transform to Find the Call Option Price

In this section, we consider the pricing of ATM and ITM call options using the FFT algo-

rithm. The same procedure is followed by Carr and Madan [13] and can easily be extended

to the case for OTM call options.

Discretising the integral in the pricing function,

ĉT (k) =
e−αk

π

∫ a

0
Re
[
e−iukψT (u)

]
du,

by using the trapezoidal rule gives us:

ĉT (k) ≈ Re

e−αk
π

N∑
j=1

e−iujkψT (uj) ∆

 , (3.15)

where ∆ gives us the distance between successive points on our discretised integration grid,

uj = ∆ (j − 1) and a = N∆.

Now, the FFT is an efficient method of computing the sum

w (v) =

N∑
j=1

e−i
2π
N

(j−1)(v−1)x (j) (3.16)

for v = 1, 2, . . . , N . Consequently, we want to manipulate (3.15) to look like (3.16). This

can be achieved by defining

kv = − b+ η (v − 1) , (3.17)

where b = Nη
2 . Equation (3.17) gives us N log-strike values at regular intervals of width η,

ranging from −b to b. Finally, setting η∆ = 2π
N , we get

ĉT (kv) ≈ Re

e−αkv
π

N∑
j=1

e−iη∆(j−1)(v−1)eibujψT (uj) ∆


= Re

e−αkv
π

N∑
j=1

e−i
2π
N

(j−1)(v−1)eibujψT (uj) ∆

 . (3.18)
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Factoring in Simpson’s rule weightings to the above will help to obtain more accurate prices

for large values of ∆ (and hence small spaces between successive strike prices). This gives

us

ĉT (kv) = Re

e−αkv
π

N∑
j=1

e−i
2π
N

(j−1)(v−1)eibujψT (uj)
∆

3

(
3 + (−1)j − 1{j=1}

) , (3.19)

where 1 is the indicator function. This is almost identical to equation (3.16), with

x (j) = eibujψT (uj)
∆

3

(
3 + (−1)j − 1{j=1}

)
.

Out-of-the-Money Options. For OTM options we have

ĉT (k) ≈ 1

π sinh (αk)

∫ a

0
Re
[
e−iukγT (u)

]
du.

Discretising this in a similar way to before, we get

ĉT (kv) = Re

 1

π sinh (αkv)

N∑
j=1

e−i
2π
N

(j−1)(v−1)eibujγT (uj)
∆

3

(
3 + (−1)j − 1{j=1}

) .
(3.20)

3.1.5 The Fast Fourier Transform Algorithm

The power of the FFT (see Zhu [59]) lies in its ability to reduce the number of operations

required to compute sums such as those in equations (3.19) and (3.20). Computing N option

prices using either of these would require a number of arithmetical operations of the order

of O
(
N2
)
. The FFT, however, drastically reduces this number. Consider the discretised

call pricing function for ATM/ITM options given by equation (3.19). We re-write it with

x (j) = eibujψT (uj)
∆

3

(
3 + (−1)j − 1{j=1}

)
,

to get

ĉT (kv) =
e−αkv

π

N∑
j=1

e−i
2π
N

(j−1)(v−1)x (j) ,

where we ignore the use of the operator Re [·] for simplicity. We can now split this sum into

two parts by setting M = N
2 . From Zhu [59]:

ĉT (kv) =
e−αkv

π

N
2∑
j=1

e−i
2π
N

[2(j−1)](v−1)x (2j − 1) +
e−αkv

π

N
2∑
j=1

e−i
2π
N

[2(j−1)+1](v−1)x (2j)

=
e−αkv

π


M∑
j=1

e−i
2π
M

(j−1)(v−1)x (2j − 1) + e−i
2π
N

(v−1)
M∑
j=1

e−i
2π
M

(j−1)(v−1)x (2j)

 .
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Splitting this into two parts, we see that

ĉT (kv) =
e−αkv

π

[
ĉ

(odd)
T (v) + e−i

2π
N

(v−1)ĉ
(even)
T (v)

]
(3.21)

if v < M + 1, and

ĉT (kv) =
e−αkv

π

[
ĉ

(odd)
T (v −M) + e−i

2π
N

(v−1)ĉ
(even)
T (v −M)

]
(3.22)

if v ≥M + 1. Now for a given value of v, say v∗ where 1 ≤ v∗ ≤M ,[
ĉ

(odd)
T (v) + e−i

2π
N

(v−1)ĉ
(even)
T (v)

]∣∣∣
v=v∗

=
[
ĉ

(odd)
T (v −M)− e−i

2π
N

(v−1)ĉ
(even)
T (v −M)

]∣∣∣
v=v∗+M

,

and so we only need to compute the values of 3.21 and we will automatically have those for

3.22. Furthermore, we can break down each of the sub-sequences ĉ
(even)
T (v) and ĉ

(odd)
T (v)

into two further sub-sequences. Continuing this way, we will eventually arrive at a series of

sub-sequences, each of length 1. Ultimately, this allows us to reduce the number of compu-

tations required to compute the discretised Fourier transform from O
(
N2
)

to O (N log2N).

The reduced number of computations means that the FFT can provide solutions to Fourier

transforms much faster than simple summation routines are able to. This is specifically

useful when dealing with large values of N .

3.1.6 Characteristic Functions for the Heston, Bates and SVJJ Models

In this subsection, we consider the characteristic functions of the Heston, Bates and SVJJ

models. For a more in depth overview of these, see Appendix B.

The Heston Model Characteristic Function

The characteristic function of the log-stock price under the Heston model is given by (Duffie

et al. [22], Gatheral [25], Heston [28], Kilin [35]):

φsT (u) = Ẽ
[
eiusT

]
= exp {C (u, T ) θ +D (u, T )V0 + iu (log (S0) + rT )} , (3.23)

where V0 is the initial value of the variance process, T is the expiration date of the option

and

C (u, T ) = κ

[
rnegT −

2

σ2
v

log

(
1− ge−dT

1− g

)]
(3.24)

D (u, T ) = rneg

[
1− e−dT

1− ge−dT

]
, (3.25)
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with

g :=
rneg

rpos

rpos/neg =
β ± d

2γ

d =
√
β2 − 4αγ

α =

(
−u2 − iu

)
2

β = κ− ρσviu

γ =
σ2
v

2
.

The Bates Model Characteristic Function

The characteristic function of the log-stock price in the Bates model is the same as that in

the Heston model, with the addition of a “jump part”. This gives us (Bates [5], Duffie et

al. [22], Gatheral [25], Kilin [35]):

φsT (u) = Ẽ
[
eiusT

]
= exp {C (u, T ) θ +D (u, T )V0 + P (u)λT + iu (log (S0) + rT )} , (3.26)

where

P (u) = − µJ iu+
[
(1 + µJ)iu eσ

2
S( iu2 )(iu−1) − 1

]
. (3.27)

The functions C (u, T ) and D (u, T ) have the same form as for the Heston model.

The SVJJ Model Characteristic Function

The characteristic function of the log-stock price in the SVJJ model is similar to that in the

Bates model, however it allows for jumps in both the stock price and variance processes.

As a result, we find that the characteristic function of this model has a similar form to that

of the Bates model, with a more complicated jump component. This gives us (Duffie et al.

[22], Gatheral [25]):

φsT (u) = Ẽ
[
eiusT

]
= exp {C (u, T ) θ +D (u, T )V0 + P (u, T )λ+ iu (log (S0) + rT )} , (3.28)

where

P (u, T ) = − T (1 + iuµJ) + exp

{
iuµS +

σ2
S(iu)2

2

}
ν (3.29)
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and

ν =
β + d

(β + d) c− 2µV α
T +

4µV α

(dc)2 − (2µV α− βc)2×

log

[
1− (d− β) c+ 2µV α

2dc

(
1− e−dT

)]
(3.30)

c = 1− iuρJµV .

Again, C (u, T ) and D (u, T ) have the same form as for the Heston model. The expressions

for β, d and α are also the same as in the case for the Heston model.

3.1.7 The Complex Logarithm in the Heston Characteristic Function

Zhu [59] gives a concise overview of the problem with the complex logarithm in the Heston

model. He also presents some of the popular methods of solving this issue.

The numerical implementation of Heston’s [28] original formulation of the characteristic

function for the model gives rise to numerical instability due to the presence of a complex

logarithm. This issue, by extension, also effects the other two models that we are concerned

with. Any complex number can be expressed as

z = x+ iy

= aeib

= a (cos(b) + i sin(b)) ,

where a =
√
a2 + b2 and b = b0 + 2πm such that b0 ∈ [−π, π] and m is an integer. Thus,

z = a (cos(b0) + i sin(b0))

= aeib0

by Euler’s formula and the properties of sin and cos. Furthermore, the logarithm of z can

be expressed as

log (z) = log
(
aeib

)
= log (a) + ib

= log (a) + i (b0 + 2πm) .

This illustration shows that the complex number, z, is fully and uniquely characterised

by a and b0. The logarithm of this number, however, depends on a, b0 and m in such

a way that any selected value of m will yield the same value for the complex logarithm.
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In general, computational software programs thus set m to zero and consider only the

value of a and b0 — the principal branch — in the computation of a complex number and

its logarithm. While this approach is acceptable for individual computations of complex

numbers, it causes problems in computations involving the characteristic function of the

Heston model. Specifically, it leads to discontinuities in the integrand functions involving

the Heston characteristic function in the option pricing expressions for the model. Ignoring

these effects can often lead to erroneous option prices.

There are a number of algorithms to take care of this problem, some of which are reviewed

by Zhu [59]. In our case, we use a different formulation of the characteristic function of

the Heston model to that originally proposed by Heston [28]. This is one which is derived

by Gatheral [25] and involves a modification to the complex logarithm in the characteristic

function to ensure that it never crosses the negative real axis. This prevents unnecessary

branch cuts in the complex logarithm and solves the discontinuity problem. Consequently,

it is safe to implement this method without worrying about unwittingly obtaining incorrect

option prices.

3.1.8 Drawbacks and Alternatives to the Fast Fourier Transform

The FFT method described above is a fast and efficient method for computing option prices,

where the relevant stock price model does not produce a simple closed-form option pricing

formula (whereas the Black-Scholes model, for example, does exhibit an easily computable

closed-form option pricing formula). This is particularly relevant in our case, where none

of the models that we have considered produces such a formula. The ability of the FFT to

simultaneously compute option prices for a large range of strikes is also particularly useful.

This property greatly reduces computation times for model calibration. The method does,

however, have a number of drawbacks and there are alternative pricing methods that can

also be used, instead of the FFT method, to find option prices.

One of the major drawbacks of the FFT scheme is that it forces log-strike prices to fall

on the grid kv = −b+ λ (v − 1) (with equally spaced grid points). As a result, the method

is limited to pricing only options whose corresponding log-strike prices fall on that grid. To

price options with log-strikes that do not fall on the grid requires the use of an appropriate

interpolation scheme. Deciding which one to use is not always easy and, regardless of the

scheme chosen, some numerical inaccuracy will always result. This can, if not controlled

correctly, negatively impact on pricing, calibration and hedging schemes.
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Another drawback of the FFT method is that the value of N , specifying the number of

grid points must always be a power of 2. This is apparent by considering the way in which

the FFT algorithm reduces the number of computations required to compute the discretised

inverse Fourier transform. This leads to a limitation in the specification of the upper bound

of integration for the inverse transform.

A final drawback of the FFT method comes from the relationship λ∆ = 2π
N . As a

result of this, the size of the spacings in the integration grid, and those in the strike grid are

inversely related. If we want to have small spaces between points on the log-strike grid, then

we must settle for large spaces between points on the integration grid (or vice versa). This

obviously impacts negatively on the accuracy of the method. The inclusion of Simpson’s

rule weightings when computing the discrete inverse Fourier transform, as set out in the

Carr and Madan [13] option pricing framework, can help to overcome this.

Alternatives to the FFT pricing method include the recently developed COS method by

Fang et al. [23], as well as the fractional FFT and direct integration (DI) schemes. Kilin

[35] presents an informative comparison of the FFT, fractional FFT and DI schemes. In

his paper, he illustrates how an improvement to the FFT method of Carr and Madan —

to yield the fractional FFT method — can greatly increase the computational speed of the

pricing scheme. He further analyses a caching technique that can be used in conjunction

with direct integration schemes to make the computation of option prices for a large range

of strikes under the schemes more efficient. He concludes that this final method is the most

efficient of the three.

3.2 Monte Carlo Methods

Monte Carlo methods are used extensively in mathematical finance. They provide a con-

venient way of simulating stock price distributions and pricing options where closed form

solutions are difficult to derive, or do not exist at all. For these reasons, the use of Monte

Carlo methods is particularly useful to us. Kloeden and Platen [36] provide a rigorous

treatment on the simulation of stochastic differential equations. Of particular interest to

us is their derivation of the Itô-Taylor expansion in that it forms the basis of the Euler-

Maruyama simulation scheme. Gatheral [25] also examines the application of Monte Carlo

methods to the simulation of stochastic volatility models. The paper by Broadie and Kaya

[11] provides an excellent treatment on exact simulation schemes for the three models with

which we are concerned. Such schemes allow for the simulation of stock price processes by

sampling from the exact distributions of the stock price and volatility process increments.
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We also draw from Poklewski-Koziell [48] for our treatment on Monte Carlo methods for

the Heston model.

In the sections that follow, we present the Euler-Maruyama and exact simulation schemes

for the Heston, Bates and SVJJ models. We also look at the application of these schemes

to vanilla call pricing.

3.2.1 The Itô-Taylor Expansion

Consider a one dimensional Itô stochastic differential equation (SDE) given by (see Kloeden

and Platen [36])

dXt = α (Xt) dt+ β (Xt) dZt, (3.31)

or equivalently in integral form

Xt = X0 +

∫ t

0
α (Xu) du+

∫ t

0
β (Xu) dZu, (3.32)

where α (Xt) , β (Xt) ∈ C2(<) are stochastic processes adapted to the natural filtration

generated by Xt. As usual, Zt is a standard Brownian motion. Next, by applying Itô’s

Lemma to the function f (Xt) ∈ C2(<) we get

f (Xt) = f (X0) +

∫ t

0
L0f (Xu) du+

∫ t

0
L1f (Xu) dZu, (3.33)

for all t ≥ 0, where

L0 = α
∂

∂x
+

1

2
β2 ∂

2

∂x2

L1 = β
∂

∂x
.

Now, by applying Itô’s Lemma to the processes α (Xt) and β (Xt), it can shown that equa-

tion (3.32) becomes

Xt = X0 + α (X0)

∫ t

0
du+ β (X0)

∫ t

0
dZu +R1, (3.34)

where the remainder term is defined by

R1 =

∫ t

0

∫ u

0
L0α (Xy) dydu+

∫ t

0

∫ u

0
L1α (Xy) dZydu

+

∫ t

0

∫ u

0
L0β (Xy) dydZu +

∫ t

0

∫ u

0
L1β (Xy) dZydZu. (3.35)
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If we do the same for L1β (Xt) in (3.35), we get

Xt = X0 + α (X0)

∫ t

0
du+ β (X0)

∫ t

0
dZu

+ L1β (X0)

∫ t

0

∫ u

0
dZydZu +R2, (3.36)

where we define the remainder term

R2 =

∫ t

0

∫ u

0
L0α (Xy) dydu+

∫ t

0

∫ u

0
L1α (Xy) dZydu

+

∫ t

0

∫ u

0
L0β (Xy) dydZu +

∫ t

0

∫ u

0

∫ y

0
L0L1β (Xv) dvdZydZu

+

∫ t

0

∫ u

0

∫ y

0
L1L1β (Xv) dZvdZydZu. (3.37)

The Itô-Taylor expansion forms the basis for the derivation of the Euler-Maruyama and

one-dimensional Milstein schemes. In what follows, we implement the Euler-Maruyama

scheme for the three stochastic volatility models. We choose to implement this method due

to its simplicity and speed (relative to other Monte Carlo schemes).

3.2.2 The Euler-Maruyama Simulation Scheme

Euler Monte Carlo for the Heston Model

Truncating equation (3.34) just before the remainder term and applying it to the log-stock

price and variance processes of the Heston model yields the Euler-Maruyama scheme for

Heston. We consider the log of the stock process and not simply the stock process itself to

enforce positive stock price values over all possible simulation paths. Applying Itô’s Lemma

to the function f (St) = log (St) yields

d logSt = rdt− 1

2
Vtdt+

√
VtdW̃

(1)
t . (3.38)

We can apply the Cholesky decomposition to enforce correlation between the log-stock price

and variance processes. This gives us

d logSt = rdt− 1

2
Vtdt+

√
Vt

[
ρdZ̃

(2)
t +

√
1− ρ2dZ̃

(1)
t

]
(3.39)

dVt = κ (θ − Vt) dt+ σv
√
VtdZ̃

(2)
t , (3.40)

for all t ≥ 0, where Z̃
(1)
t and Z̃

(2)
t are two independent Brownian motions. Discretising the

two equations above according to equation (3.34) (excluding the remainder term) yields the

Euler-Maruyama simulation scheme for the Heston model:

∆ logSt = r∆t− 1

2
Vt∆t+

√
Vt

[
ρ∆Z̃

(2)
t +

√
1− ρ2∆Z̃

(1)
t

]
(3.41)

∆Vt = κ (θ − Vt) ∆t+ σv
√
Vt∆Z̃

(2)
t , (3.42)
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where ∆ is used to represent the change in the respective variable.

Now, the form of the continuous variance process prevents it from ever going below zero.

Discretising it, however, opens up the possibility for the occurrence of negative variance

values. This is obviously an undesirable situation and a fix is required in case this should

happen (which is inevitable when a large number of simulation paths is produced). To

this end, Lord et al. [40] give a summary of a number of different, but simple fixes, all of

which entail either reflecting or absorbing the discretised volatility process as soon as it

goes negative. Reflection is achieved by applying the absolute value operator to negative

variance terms. Absorption involves setting negative variance terms equal to zero. Such

fixes ultimately distort the distribution of stock prices, although reflecting variance values

which become “very negative” can induce a larger positive bias than merely setting them

equal to zero. As a result, the absorption fix is often preferred. Other fixes entail reflecting

or absorbing only terms which are contained within a square root. These do not necessarily

solve the problem of negative variances, they only prevent complex stock price values from

occurring, and can also lead to greater biases if the variance process becomes even more

negative.

The five fixes considered by Lord et al. [40] for Heston’s model are 1) the absorption fix;

2) the reflection fix; 3) the Higham and Mao fix, where only negative variance values in the

square root term of the variance process are reflected; 4) the partial truncation fix, where

only negative variance values in the square root term of the variance process are absorbed;

and 5) the full truncation fix, where negative variance values in the square root term and

in the drift term of the variance process are absorbed.

Figure 3.1 gives a graphic comparison of the five methods. As can be seen from the graph

— and as shown by Lord et al. — the full and partial truncation schemes (but most notably,

the full truncation scheme) give the fastest convergence to the true option price. These two

fixes induce less bias than the others by allowing the variance process to become negative,

instead of constantly forcing it to be greater than or equal to zero. We therefore make use

of the full truncation fix in this project.

Euler Monte Carlo Extension to the Bates Model

A basic simulation scheme for the Bates model follows directly from the Euler-Maruyama

scheme for the Heston model. The jump and diffusion parts of the stock price process

under the Bates model can be simulated separately and multiplied together at the end. To

simulate the diffusion part of the stock price process, we follow exactly the same procedure
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Figure 3.1 Comparison of different fixes for the occurrence of negative variance
values in Euler-Maruyama simulation scheme for the Heston model (plot taken
from Poklewski-Koziell [48]).

as above — we use the Euler-Maruyama discretisation scheme for the Heston model to find

a preliminary value for St, say S −t . Next we simulate the jump part of the stock price

process. To achieve this, we first need to simulate a Poisson process, Ñt, with intensity λ.

The simulated process Ñt then gives us the number of jumps that occur between times 0 and

t. We denote this number by n. Next, we simulate jump sizes according to the distribution

of 1 +J — i.e. we generate n log-normal random variates with mean µS and variance σ2
S . If

we label each one of these jump sizes ξ
(S)
i for i = 1, . . . , n, then the final stock price under

this scheme for the Bates model is given by the product of the final stock price generated

by the Euler-Maruyama scheme for the Heston model and each of the ξ
(S)
i . This can be

expressed as:

St = S −t

n∏
i=1

ξ
(S)
i . (3.43)

Euler Monte Carlo Extension to the SVJJ Model

In a similar way to the Euler-Maruyama extension to the Bates Model, we can extend the

Euler-Maruyama method that was used for the Heston model and apply it to the SVJJ

model. The implementation of this method for the SVJJ model is, however, slightly more
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complicated than it was for the Bates model. This is due to the fact that jumps in the

volatility process prevent us from simply simulating the diffusion part of the model sepa-

rately from the jump part. Instead, we first need to simulate jump times and magnitudes

for the two processes and then simulate their diffusion parts between the jump times.

We begin the simulation procedure by simulating a Poisson process, Ñt, between times 0

and t. This gives us the number, n, of jumps occurring between 0 and t and the times, ti,

at which the jumps occur, where i = 1, . . . , n (0 ≤ t1 ≤ · · · ≤ tn ≤ t). If n = 0, we ignore

the jump part of the simulation scheme and simply simulate the whole process (up to time

t) as we did for the Heston model. Otherwise, in each interval [ti−1, ti] (note that we set

t0 = 0), we first simulate the diffusion parts of the two processes in the same way that we

did for the Heston model. This gives us preliminary values for the stock price and variance

processes at time ti. We denote these by S −ti and V −ti respectively. We now proceed to

simulate the jump sizes for the two processes at ti. The size of the jump in the volatility

process, ξ
(V )
ti

, has an Exponential (µV ) distribution and the size of the jump in the stock

price process, ξ
(S)
ti

, has a log-normal
(
µS + ρJξ

(V )
ti

, σ2
S

)
distribution. We can then update

the values of the two processes to give us

Sti = S −ti ξ
(S)
ti

(3.44)

Vti = V −ti + ξ
(V )
ti

, (3.45)

where Sti and Vti are the final values of the two processes at ti. Once we have repeated this

procedure for all values of i, we need to complete the Euler-Maruyama scheme by simulating

the stock price and variance processes between time tn and time t. If time tn = t, then

St = Stn , Vt = Vtn and we are done. Alternatively, if tn ≤ t, then no jumps occur in the

interval [tn, t] and we apply the method used for the Heston model to simulate the processes

between tn and t and obtain the values of St and Vt.

3.2.3 The Exact Simulation Scheme

Exact Simulation for the Heston Model

The exact simulation scheme for the Heston model is laid out in Broadie and Kaya [11]

and is in some sense the gold standard of simulation techniques for the model. It is a very

accurate simulation method, but also a very computationally intensive and time consuming

one. The scheme involves sampling from the exact distribution of the stock price and

variance processes and so is, in a stochastic sense, bias free. This makes it more robust

than the Euler-Maruyama method.
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Considering the formulation of the model that was given earlier in the derivation of the

Euler-Maruyama Monte Carlo method for the Heston model, we begin by integrating (3.39)

and (3.40) so that

St = S0 exp

[
rt− 1

2

∫ t

0
Vudu+ ρ

∫ t

0

√
VudZ̃

(2)
u

+
√

1− ρ2

∫ t

0

√
VudZ̃

(1)
u

]
(3.46)

Vt = V0 + κθt− κ
∫ t

0
Vudu+ σv

∫ t

0

√
VudZ̃

(2)
u . (3.47)

The variance process in the Heston model is the same as the interest rate model used by

Cox et al. [21]. In their paper, they derive the distribution of this process at some time

point t > 0, given that the value of the process is known at an earlier point, say time 0. If

Vt and V0 denote the values of the variance process at times t and 0 respectively, then the

distribution of Vt given V0 is a scaled non-central chi-square distribution such that

Vt =
σ2
v(1− e−κt)

4κ
χ2
γ (ζ)

ζ =
4κe−κt

σ2
v(1− e−κt)

V0

γ =
4θκ

σ2
v

,

where χ2
γ (ζ) denotes a non-central chi-square distribution with non-centrality parameter ζ

and γ degrees of freedom.

Furthermore, Broadie and Kaya [11] state that if at time t, we know Vt then

logSt ∼ N
(
µSt , σ

2
St

)
, (3.48)

where,

µSt = logS0 + rt− 1

2

∫ t

0
Vudu+ ρ

∫ t

0

√
VudZ̃

(2)
u (3.49)

σ2
St =

(
1− ρ2

) ∫ t

0
Vudu. (3.50)

Using these two distributions, we can sample values for the stock price and variance pro-

cesses of the Heston model.

The complexity, as well as the computational “bottleneck”, in this method is the compu-

tation of the integral ∫ t

0
Vudu. (3.51)
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Through the use of Laplace transform methods, Fourier inversion methods and the trape-

zoidal rule, Broadie and Kaya construct a method for estimating this integral. The charac-

teristic function of the integral is given by (drawing directly from their paper):

Φ(a) = E
[
eia

∫ t
0 Vudu

∣∣∣V0, Vt

]
=

{
γ(a)e−0.5(γ(a)−κ)t

(
1− e−κt

)
κ
(
1− e−γ(a)t

) }

× exp

{
V0 + Vt
σ2
v

[
κ
(
1 + e−κt

)
1− e−κt

−
γ(a)

(
1 + e−γ(a)t

)
1− e−γ(a)t

]}

×


I0.5d−1

[√
V0Vt

4γ(a)e−0.5γ(a)t

σ2
v(1−e−γ(a)t)

]
I0.5d−1

[√
V0Vt

4κe−0.5κt

σ2
v(1−e−κt)

]
 , (3.52)

where,

γ(a) =
√
κ2 − 2σ2

v ia

d =
4θκ

σ2
v

,

and Iv(x) is a modified Bessel function of the first kind. Then, making use of the inverse

Fourier transform and the trapezoidal rule, a discrete approximation of the probability

distribution function of the integral can be found:

F (x) = Prob

[∫ t

0
Vudu ≤ x

∣∣∣∣V0, Vt

]
=

2

π

∫ ∞
0

sin(ux)

u
Real [Φ(u)] du (3.53)

≈ hx

π
+

2

π

∞∑
j=1

sin(hjx)

j
Real [Φ(hj)]

≈ hx

π
+

2

π

N∑
j=1

sin(hjx)

j
Real [Φ(hj)] . (3.54)

The main difficulty here is finding the best values of N and h to use so that we can obtain a

good approximation for (3.53). In equation (3.54), there are two different types of errors to

consider — the discretisation error, which is governed by our choice of h, and the truncation

error, which is governed by our choice of N . We can thus write:

F (x) =
2

π

∫ ∞
0

sin(ux)

u
Real [Φ(u)] du

=
hx

π
+

2

π

N∑
j=1

sin(hjx)

j
Real [Φ(hj)]− εDisc(h)− εTrunc(N).
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Firstly, Broadie and Kaya [11] show that the discretisation error, εDisc(h), is bounded

below by 0, and above by 1 − F
(

2π
h − x

)
. Setting ξDisc = 2π

h − x, we can ensure that

our discretisation error is bounded above by δDisc (where δDisc is a small positive number),

by finding a value of h such that h = 2π
x+ξDisc

≥ π
ξDisc

, where δDisc = 1 − F (ξDisc) and

0 ≤ x ≤ ξDisc. Actually solving for ξDisc is not trivial. Broadie and Kaya explain, however,

that it is possible to find the moments of the distribution of (3.51) from its characteristic

function and make ξDisc at least as large as the resulting mean plus five times the resulting

standard deviation, to ensure that δDisc is “small enough”. Next, since |sin(ux)| is bounded

above by 1, and the characteristic function given by (3.52) is a monotonically decreasing

function for increasing values of u, the integrand in (3.53) must always lie below 2|Re[Φ(u)]|
πu .

Broadie and Kaya show that this, in turn, is bounded above by η(u) = 2|[Φ(u)]|
πu and, since

the integrand is an oscillating one, a good approximation of the truncation error is given

by εTrunc(N) = hη(Nh). Thus, to achieve a truncation error of δTrunc, we can select a value

for N subject to the condition that 2|Φ(hN)|
πN < δTrunc. Now, actually working out values

for N and h in this way can be quite laborious. Instead, it can be easier to find these two

parameters by trial and error. This is recommended by Broadie and Kaya and is also the

way that we derive values for N and h. In our implementation of the exact simulation

scheme, we pick N = 800 and h = 0.5.

The final step here is to actually sample from the integral. Setting F (x) = U , where U is

a uniform random variable, we can use the inverse transform method to do so. MATLAB

has a number of robust optimisation algorithms that can be used to find x — the sampled

value of the integral.

Finally, we need to generate a sample from the integral,∫ t

0

√
V (u)dZ̃(2)

u . (3.55)

Since we have already found a value for (3.51), however, we can simply solve for (3.55)

algebraically by rearranging (3.47). Having sampled values from the distributions of the

integrals, (3.51) and (3.55), we can now obtain a random variate from the distribution of the

log-stock price process, simply by generating a random number from a normal distribution

with mean and variance given by (3.49) and (3.50).

In summary, the Broadie and Kaya exact simulation scheme for the Heston model can be

carried out according to the following:

1. Generate the values V0 and Vt from the scaled non-central chi-squared distribution of

the variance process.
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2. Randomly sample from the distribution of
∫ t

0 Vudu.

3. Solve for
∫ t

0

√
VudZ̃

(2)
u from (3.47).

4. Generate a random value for the stock price process by sampling randomly from a

normal distribution with mean (3.49) and variance (3.50) and taking the exponential

of the resulting value.

Exact Simulation for the Bates Model

The exact simulation scheme for the Bates model follows a similar procedure to the Euler

Monte Carlo method for the Bates model. Again, the jump and diffusion parts of the

model can be evaluated separately and combined at the end. We start by simulating values

for S −t (the value of the stock price before we include the jump part) and Vt using the

exact simulation framework for the Heston model. To simulate the jump part of the stock

price process, we simulate a Poisson process Ñt, with intensity λ, giving us the number of

jumps, n, occurring between 0 and t. Next, we generate n log-normally distributed random

variates with mean µS and variance σ2
S . These give us the sizes of the jumps in the stock

price process. Labeling the ith jump size ξ
(S)
i for i = 1, . . . , n, our final stock price is given

by

St = S −t

n∏
i=1

ξ
(S)
i . (3.56)

Exact Simulation for the SVJJ Model

Again, we can extend the exact simulation scheme for the Bates model to that for the SVJJ

model. The procedure that we follow is almost identical to that for the Euler-Maruyama

method for the SVJJ model. We start by simulating a Poisson process, Ñt, with jump

intensity λ to give us the number, n, of jumps occurring between times 0 and t. We denote

the times at which the jumps occur by ti, where i = 1, . . . , n and 0 ≤ t1 ≤ · · · ≤ tn ≤ t.

For each interval [ti−1, ti], we simulate the diffusion parts of the stock price and volatility

processes according to the exact simulation scheme for the Heston model. This gives us

preliminary values, S −ti and V −ti , for our stock price and variance processes at ti. Next, we

simulate jump sizes for the jumps in the two processes in the same manner that we did in

the Euler-Maruyama method for the SVJJ model. These jumps are given by ξ
(S)
ti

and ξ
(V )
ti

respectively. The final values of the two processes at time ti can then be calculated:

Sti = S −ti ξ
(S)
ti

(3.57)

Vti = V −ti + ξ
(V )
ti

. (3.58)
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Again, if t 6= tn, then no jumps occur in the interval [tn, t] and we apply the method used

for the exact simulation scheme for the Heston model to find the values of St and Vt.

3.3 A Comparison of Pricing Methods

Figure 3.2 gives a comparison of vanilla call pricing methods for the Heston, Bates and SVJJ

models. In the plots, the flat red lines represent the FFT method prices for at-the-money

vanilla call options (the parameter inputs are the same as for the synthetic data in the next

chapter). It is evident in all three plots that the two Monte Carlo pricing methods converge

to the FFT method price.

Figure 3.2 Comparison of the FFT, Euler Monte Carlo and Exact Simulation
Monte Carlo methods for pricing vanilla European call options under the three
models. On the horizontal axis, we have the number of sample paths and can
see that both Monte Carlo techniques converge to the FFT price. The upper and
lower bounds are the 95% confidence bounds.

Of particular interest, however, are the times taken for the respective methods to compute

option prices. The FFT method simulation times were 0.011, 0.013, 0.015 seconds for the

Heston, Bates and SVJJ models respectively. The table below sets out the results for the

Monte Carlo pricing methods.
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Monte Carlo Pricing Results — Simulation Times (seconds) and Errors

Number of Paths 10 500 1000 5000 10000

Heston Euler
Simulation Time ∼ 0 ∼ 0 0.02 0.06 0.09

Deviation from FFT −24.33% −0.56% 3.09% 0.26% 1.19%

Heston Exact
Simulation

Simulation Time 0.75 28.35 56.63 290.49 581.9
Deviation from FFT 17.13% 4.54% 3.80% 0.98% 1.39%

Bates Euler
Simulation Time 0.02 0.02 0.02 0.11 0.22

Deviation from FFT 29.65% −3.63% 3.67% −0.92% 0.83%

Bates Exact
Simulation

Simulation Time 0.76 29.97 59.16 293.36 593.21
Deviation from FFT 11.80% −0.70% 5.73% 1.31% 0.01%

SVJJ Euler
Simulation Time 0.02 0.06 0.11 0.53 1.06

Deviation from FFT −23.30% 9.70% 0.52% −2.41% −1.48%

SVJJ Exact
Simulation

Simulation Time 1.06 54.74 109.95 544.47 1082.66
Deviation from FFT 26.14% 0.27% −0.20% −1.05% −0.02%

For the purpose of pricing vanilla call options, the FFT method is much faster and more

accurate than either of the two Monte Carlo methods. The problem arises, however, when

we need to price exotic options. In this case, the FFT method does not (in general) provide

us with a solution. Instead, we need to revert to Monte Carlo methods. As such, the two

Monte Carlo methods that we have considered are extremely robust in that they provide a

means by which to price almost any type of option. They are also useful in the computation

of option price sensitivities, or “Greeks”.

Comparing the two Monte Carlo methods, it is clear that the Euler-Maruyama method

is much faster than the exact simulation method. The exact simulation scheme is far more

complicated than the Euler-Maruyama scheme and much of the computational “bottleneck”

arises due to computation of the integral (3.51). The advantage of using this method, how-

ever, is that it is almost free from discretisation error. When using Monte Carlo methods as

pricing tools, we need to be careful of two types of error: statistical error and discretisation

error. Statistical error results from using simulation paths to estimate an average (e.g. an

option price). This can be reduced through the application of the central limit theorem, by

increasing the number of simulation paths. Figure 3.2 gives evidence of this phenomenon.

Arguably of more importance, however, is the discretisation bias in a simulation scheme. By

discretising a continuous process (such as any of the processes describing the models in this

document), we open the scheme up to errors which cannot be reduced simply by increasing

the number of sample paths in our simulation. Instead, we have to be very careful that the

method we choose to use does not lead to a convergence to the wrong option price. This is

particularly relevant when pricing exotic options, where we often have no other methods to

check the accuracy of our final answer. In such situations, the use of the exact simulation
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scheme is more robust than the Euler-Maruyama method. It guarantees convergence to

the correct option price as the number of sample paths is increased. Broadie and Kaya

[11] provide a thorough analysis of these two types of errors, as well as a review of the

Euler-Maruyama and exact simulation schemes for the Heston, Bates and SVJJ models.

A drawback of these Monte Carlo methods — especially the exact simulation scheme —

is that they are computationally intensive to implement. We can, however, resort to parallel

computing techniques to improve this.

3.4 Parallel Monte Carlo Methods for the Heston Model

An interesting area of research, particularly in terms of computational finance, is parallel

computing. Parallelising computer code can produce great speed-ups for algorithms that

would otherwise be labourious to implement. This is particularly relevant in the field of

finance, due to constant time pressures in the practical implementation of financial algo-

rithms.

We look briefly at the implementation of Heston Monte Carlo methods in parallel in

MATLAB. The parallel computing toolbox in MATLAB is particularly convenient for this

purpose. It facilitates the use of a number of commands for implementing code in parallel.

Probably the most useful of these (at least for the purpose of Monte Carlo simulations) is

the parfor routine that automatically implements for-loops in parallel.

In the table below, we show the results of the application of the parfor routine to Monte

Carlo simulations in the Heston model. We see large speed-ups in the computation times

for the exact simulation scheme for the Heston model as a result of parallelisation. The

parallelisation here was implemented around the routine that samples from the integral

(3.51), since this is where the major computational “bottleneck” lies in the algorithm. In-

terestingly, we actually see an increase in the simulation times for the Euler-Maruyama

method for the Heston model. This results from altering our MATLAB code to allow for

parallelisation. The original script for the Euler-Maruyama method makes use of partially

vectorised code and a single for-loop going forward in time steps, to compute the sample

stock price and volatility processes of the Heston model. To implement this code in par-

allel, we alter it to make use of two for-loops — one nested inside the other — with one

computing across simulation paths and the other going forward in time steps. This allows

us to parallelise the for-loop computing across simulation paths. Unfortunately, however,

MATLAB handles the partially vectorised code better and can implement it faster than the
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parallelised code. Note that in running our simulations, we implement parallel code on the

six cores of an Intel Core i7 processor. Increasing the number of cores would probably give

us better results. Nonetheless, the speedups for the exact simulation method are significant

and support the notion of investing time and resources into the parallelisation of Monte

Carlo methods.

Parallel Monte Carlo Simulation Times (seconds) for the Heston Model

Number of
Paths

Heston Euler
Parallel

Heston Euler
Heston Exact

Simulation

Parallel
Heston Exact

Simulation

10 ∼ 0 0.16 0.75 0.31

500 ∼ 0 0.08 28.35 5.58

1000 0.02 0.11 56.63 11.36

5000 0.06 0.55 290.49 56.78

10000 0.09 1.01 581.90 111.79



Chapter 4

Model Calibration

So far in this dissertation, we have reviewed a number of stochastic volatility models as

well as some of the pricing techniques that can be used to produce option prices from these

models. The calibration of these models to synthetic and market option data forms a major

theme of this project and makes use of the techniques presented in the previous sections.

Calibrating models to market data (either option prices or implied volatilities) allows us

to infer the (risk-neutral) market parameters for the different models and thus use these

models for pricing and hedging purposes. We do not consider fitting the models to historical

data in this dissertation. This would be an interesting topic for a separate report.

One of the purposes of using complicated stock price models — specifically the ones

we have considered so far — is to obtain better calibration fits to market data. This is

particularly important for risk management and portfolio optimisation purposes. The cost

of using such models, however, is that the calibration and pricing techniques that must be

employed are usually quite onerous. The choice of a calibration routine thus requires a trade-

off between its computational complexity and its accuracy. In this chapter, we present a

least-squares calibration method and review local and global optimisation schemes for fitting

the models to option data. We present some results obtained by fitting the models to both

synthetic and market option prices. Throughout, we examine the merits and drawbacks of

the routines, with reference to their accuracy and robustness, as well as to their complexity.

4.1 Least-Squares Optimisation

A well documented and popular method of fitting models to observed data is to find a set of

model parameter values that minimises the square of the differences between the empirical

values and the corresponding model values. In our case, this requires us to minimise the

48
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square differences of the option prices generated by each of our models and the option

prices observed in the market. Note that we could also do this for model and market

implied volatilities, however, this adds to the complexity of the calibration routine. Papers

and books by Mikhailov and Nögel [43], Putschögl [49] and Zhu [59] give more insight into

the application of the least-squares optimisation method to model calibration.

Suppose that we sample option data from N vanilla options in the market. Let Ψi,

i = 1, . . . , N , be the market price of the ith option (either a call or a put option) and let Ψ̂i

be the model price of the ith option according to the model parameter set given by θ ∈ <n.

Then the sum of the square differences of the model and market prices is given by

SSD (θ) =

N∑
i=1

wi

(
Ψi

(
σBS
i , Ti,Ki

)
− Ψ̂i (θ, Ti,Ki)

)2
, (4.1)

where wi is the weight given to the ith squared-difference, σBS
i is the Black-Scholes implied

volatility of the ith option and Ti and Ki represent the time to maturity and strike price

of the ith option. Our calibration scheme now consists of finding the parameter set θ∗ that

minimises the sum of squared differences:

SSD (θ∗) = min
θ

N∑
i=1

wi

(
Ψi

(
σBS
i , Ti,Ki

)
− Ψ̂i (θ, Ti,Ki)

)2
. (4.2)

Another important consideration is the choice of weights wi. One possible choice is to set

wi = 1
N for all i = 1, . . . , N , making equation (4.1) a measure of mean squared errors (Zhu

[59] follows this method). Alternatively, we could let wi = |bidi− aski|−1 (as demonstrated

by Moodley [45]). This would allow us to place more weight on options which are more

liquid in the market. A third option that has also been suggested is to use the implied

volatilities of the sampled options as weights (a method explored by Cont [19]). In this

dissertation, we set the wi = 1
N for simplicity.

The actual task of calibrating a chosen model to market data requires the use of opti-

misation techniques in order to find a model parameter set that minimises (4.1). We are

dealing, however, with a non-linear problem and the function SSD (θ) is not convex, making

the choice of an optimisation algorithm tricky. The function might also have many local

minima or points which are not differentiable, making purely gradient based schemes inef-

fective and necessitating a careful choice of initial calibration parameters (Moodley [45]).

As a result, we have to choose carefully between using a local or a global optimisation rou-

tine. Global optimisation schemes tend to be less sensitive to initial parameter estimates

than local ones and should handle complicated objective functions better. They usually

take longer to converge to a solution however.



4.2 Calibration Methods 50

4.2 Calibration Methods

Optimisation schemes can be broadly categorized into two groups — local and global

schemes. Both have their merits and drawbacks. Local optimisation schemes tend to start

from their initial parameter estimates and then choose new parameter estimates such that

the value of the objective function always moves towards an optimum value. The schemes

will continue until a stationary point is found, and as such, tend to locate local optimums

rather than global ones. Simple gradient based methods are good examples of local optimis-

ers. The choice of initial parameters in these schemes, especially in non-convex situations,

is very important since a poor choice can cause the algorithm to settle in a local optimum

instead of a global one. Their simplicity, however, tends to make them faster and easier to

implement than global schemes.

Global optimisation schemes, on the other hand, are much less sensitive to initial param-

eter estimates. Ideally, they should even be independent of these. Many of these methods

also fall into the category of stochastic optimisation schemes since they generate and use

random variables to assist in locating an optimum. The two global optimisation schemes

that we implement here are also stochastic optimisation schemes, since they use random

variables to generate and accept new parameter values. This helps to prevent the algo-

rithms from becoming “stuck” in the region of a local optimum, rather than a global one.

Global schemes are usually significantly slower than local ones, thus their increased flexi-

bility comes at a computational cost (see Mikhailov and Nögel [43] and Moodley [45] for a

further discussion of local and global optimisation).

Below, we review three different optimisation schemes — the genetic algorithm (GA),

adaptive simulated annealing (ASA) and the MATLAB least-squares non-linear optimisa-

tion routine, lsqnonlin. The first two schemes are global optimisation schemes, while the

third is a faster local optimisation method. We implement these methods for the purpose

of minimising the weighted sum of squared differences between market and model option

prices.

4.2.1 Global Optimisation with the Genetic Algorithm

The primary optimisation routine that we implement is the genetic algorithm. The concept

behind this algorithm is one of natural selection and evolution, where the stronger individ-

uals of a population are selected over the weaker ones. The GA applies this to optimisation

by evaluating how well individual points in a parameter space optimise the relevant objec-

tive function. These points, or individuals, are assigned fitness values based on how well
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they do this, and these fitness values are used to decide which individuals are allowed to

“reproduce” in order to create subsequent population generations. By doing this, weaker

members of the population start to die out and only those which best optimise the objective

function survive. Selecting the fittest individual at the end of the algorithm should then

allow the user to find the point at which the global optimum lies. We refer to the book by

Coley [18] regularly in our treatment of the GA. The book provides a concise and informa-

tive overview of the algorithm and presents ways of implementing it, as well as numerous

applications for the algorithm.

Consider the situation where we are trying to optimise an objective function with a given

number of unknowns (or parameters). We do this by applying the GA to the problem and

using it to find the values of the unknowns that achieve this. To initialise the algorithm, a

population ofN individuals is randomly chosen in the form ofN strings of binary digits. The

bit strings are all of equal length and each one can be thought of (in a biological sense) as the

chromosome of the relevant individual. To proceed with the algorithm, the fitness of each

individual in the initial population must be calculated. This is achieved by converting the

bit string of each individual into real values representing possible solutions for the unknowns

in the optimisation problem. These values are then substituted into the objective function

and the corresponding bit strings are assigned fitness values based on how well they satisfy

the optimisation task. From here, the individuals undergo selection, crossover and mutation

in order that a new population of (hopefully) fitter individuals will emerge. The process

of fitness evaluation, selection, crossover and mutation is then repeated over and over to

create successive generations up to a prespecified maximum number of generations. The

final generation should then contain the individual that provides a global optimum for the

objective function. We explore the individual aspects of the algorithm in the paragraphs

that follow. Works by Back et al. [2], Coley [18] and Putschögl [49] also give insight into

the workings of the GA.

Population Initialisation. Suppose that we are trying to find the global optimum of

an objective function with n unknowns (parameters). To generate a population of N in-

dividuals, we generate N random bit strings of length nl, where l represents the substring

length that we assign to each unknown. Each individual in the population will then be

characterised by a bit string of length nl. Assigning bit string lengths in this way makes

it easy for us to convert between the bit strings and the real values of the unknowns. For

example, if we are trying to optimise a function with two unknowns and we assign bit string

lengths of 4 to each unknown, then two possible members of the initial population might
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be

1 0 1 0 1 1 1 0 and 0 0 0 1 1 0 1 1.

We can generate the entire population of the first generation by creating a matrix of di-

mensions N by nl with randomly arranged 0’s and 1’s.

Converting these to real values can be done in two steps. First, we convert the strings

to integer values by dividing each string into n equal parts (representing each unknown)

and performing a binary-to-decimal number conversion on each part. For the two example

individuals considered above,

1 0 1 0 1 1 1 0 becomes [10 14] ,

and

0 0 0 1 1 0 1 1 becomes [1 11] .

We then convert the integer values to real values through the use of

r =
rub − rlb

2l − 1
z + rlb,

where r is the real value, rub and rlb are the upper and lower bounds associated with the

unknown parameter and z is the integer value. If we have upper and lower bounds [3 4] and

[4 6] respectively, then the values of the unknowns associated with the two individuals are:

4− 3

24 − 1
10 + 3 = 3.67 and

6− 4

24 − 1
14 + 4 = 5.867 for 1 0 1 0 1 1 1 0

and

4− 3

24 − 1
1 + 3 = 3.067 and

6− 4

24 − 1
11 + 4 = 5.467 for 0 0 0 1 1 0 1 1.

For improved accuracy in terms of the real values that can be generated from the bit strings,

we should favour longer bit strings and narrower parameter bounds.

Fitness Evaluation and Scaling. The most important aspect about fitness evaluation

in our treatment of the GA is to ensure that fitness values are always positive. The reason

for this will become apparent when we consider the selection component of the algorithm. In

our case, we are interested in least-squares optimisation, meaning that the objective function

we deal with is a positive one. As a result, we can simply use the value of the objective

function implied by each individual in the population (at each generation of the algorithm)

to determine the fitness of that individual. Importantly, the GA automatically tries to

find the global maximum of any objective function, since there is a positive relationship
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between the fitness value of a given individual, and the probability that that individual

will be selected to “reproduce”. If we are trying to minimise the objective function, we

can simply subtract fitness values from some constant and turn the minimisation problem

into a maximisation one. In our case, we define the fitness value of the ith (i = 1, . . . , N)

individual in a given generation of the algorithm to be

Fitness(i) = C −ObjectiveFunction(i),

where C is a constant and the value of ObjectiveFunction(i) is found by evaluating the

objective function with parameter inputs given by the real values implied by the bit string

of the ith individual (as illustrated in the previous subsection).

Once we have determined the fitness values of all the individuals in a given generation of

the algorithm, we can apply a linear scaling to each of the values. The purpose of this is to

aid the selection component of the algorithm by preventing any individual from dominating

the algorithm, or a large group of individuals from having very similar fitness values. The

first instance might cause the algorithm to converge to a value which is not the global

optimum of the objective function. The second could slow down the rate of convergence of

the algorithm. As a result we increase or decrease the spread of fitness values in a given

generation by considering the scaled fitness value of each individual. For the ith individual

we have

ScaledFitness(i) = m× Fitness(i) + c,

where

m =
(k − 1)×AveFitness

MaxFitness−AveFitness

c = (1−m)×AveFitness

and k is the scaling constant, AveFitness is the average fitness of the individuals in the

given generation (prior to linear scaling) and MaxFitness is the maximum fitness value in

that generation (also prior to linear fitness scaling). Performing the fitness scaling in this

way means that the average fitness of the individuals will remain the same before and after

scaling. Furthermore, the fitness value of the fittest individual after the scaling will simply

be its fitness value before the scaling, multiplied by the scaling constant. This helps us to

decide on the magnitude of the constant in each generation of the algorithm. We can now

use these scaled fitness values in the selection component of the algorithm.

Selection. The selection component of the GA is the part where we select certain indi-

viduals to “reproduce” and discard the rest. The selection routine is based on the scaled
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fitness values of the individuals in the current generation of the algorithm. An individual

with a higher scaled fitness value is assigned a greater probability of being selected than

one with a lower scaled fitness value. We can achieve this by selecting individuals in the

following way:

1. Generate a random number between 0 and the sum of the scaled fitness values of all

the individuals in the population.

2. Starting with the first individual in the population, find the cumulative sum of the

scaled fitness values of all the individuals in the population.

3. Select the bit string of the first individual responsible for making the cumulative sum

larger than the random number generated in step 1.

As a consequence of performing selection in this way, we cannot allow fitness values to

be less than 0. We select two individuals at a time in this manner, allow these two to

“reproduce”, and then repeat the selection procedure until as many individuals have been

selected as the number of individuals in the original population. Obviously, this method

allows a single individual to be selected more than once.

Crossover. Crossover is the section of the algorithm where selected individuals “repro-

duce”. It is convenient to perform the crossover immediately after each set of two individuals

has been selected. As a result, the selection and crossover components of the algorithm are

usually performed simultaneously. To perform crossover, we first sample a random integer

between 1 and the bit string length of the individuals in the population. This random

integer gives us the point in the bit strings of two selected individuals where the crossover

is to be performed. The actual crossover occurs by swapping the tails of the two bit strings

after this point, thus creating two new individuals. For every pair of selected individuals we

repeat this process (sampling a new random integer each time to perform the crossover). It

is also common to occasionally prevent crossover from occurring and simply allow the two

selected individuals to “reproduce” exact replicas of themselves. A probability is assigned

to the occurrence of this.

For example, if the bit strings of two selected individuals are

1 0 1 0 1 1 1 0 and 0 0 0 1 1 0 1 1,

and the crossover point is 5, then the bit strings of the “reproduced” individuals would be

1 0 1 0 1 0 1 1 and 0 0 0 1 1 1 1 0.



4.2 Calibration Methods 55

Once selection and crossover have been performed, a new population of individuals arises

and replaces the old population. The operations of mutation and elitism are then performed

on this new population, after which, it is used to create the next generation of individuals

in the algorithm, and so the process continues.

Mutation. The operation of mutation is a simple one. Considering the bit strings of all

the individuals in the new population (after selection and crossover have been performed),

we simply change each bit in the bit string of each individual from a 0 to a 1 or a 1 to

a 0, with a certain probability. This probability is popularly given by 1 over the total bit

string length of the individuals. Performing mutation adds an element of randomness to the

algorithm and is another way to prevent the algorithm from “becoming stuck” at a local

optimum.

Elitism. The final operation that we consider in our treatment of the GA is elitism. This

operation is carried out by ensuring that the fittest individual across all generation remains

in the population until the completion of the algorithm. We do this in each generation

of the algorithm by simply checking if the fittest individual in the old population is fitter

than the fittest individual in the new population. If this is the case, then we replace the

bit string of a random individual in the new population by the fittest individual in the old

population.

The GA is an effective method to use when conducting optimisation routines on objective

functions which are non-linear, non-convex and multi-modal. This is especially true when

comparing the GA to simpler, local optimisation methods under these conditions. A draw-

back of this routine is that it is computationally intensive. As a result, local optimisation

methods tend to be much faster than the GA. The GA also does not guarantee that a global

optimum will be found for the objective function, however it should at least find a point

very close to the global optimum (see Ingber and Rosen [33] and Coley [18]).

Layout of the Genetic Algorithm

The routine followed to implement the genetic algorithm is as set out below.

1. Generate an N -by-nl matrix of randomly arranged 0’s and 1’s.

2. Convert the bit string of each individual into real numbers.

3. Evaluate the fitness of each individual.

4. Perform linear fitness scaling.
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for Generations = 2→ Maximum Number of Generations

(i) Perform selection and crossover.

(ii) Perform mutation.

(iii) Perform elitism.

(iv) Evaluate the fitness of each individual.

(v) Perform linear fitness scaling.

endfor

5. Select the fittest individual in the final generation.

Calibration With the Genetic Algorithm

The GA provides a robust method of calibrating the models already considered in this

project to market data. We can then ascertain the parameters which best allow each model

to explain market prices. The calibration of these models via the GA can be done by

implementing the following routine:

1. The most important input for this algorithm is the data that is used for the calibration

scheme. We need option price data consisting of option prices, along with the strikes

and maturities of the respective options. In our algorithms in this project, we use

option price data as opposed to implied volatility data. It is also important that we

know the risk-free rate attached to each of our option prices, along with the dividend

yields on the underlying stocks.

2. Input the necessary parameter constraints to prevent the algorithm generating values

outside the parameter bounds.

3. After the first two steps, we are ready to pass all the required data to the GA routine.

(a) Define NoOfUnknowns to be the number of unknowns in the objective function

that we are trying to estimate. Define LB and UB to be the lower and upper pa-

rameter bounds respectively. Define the variable minmax to be ’MIN’, indicating

that we want to minimise the objective function.

(b) Call the function GeneticAlgorithm, which allows us to implement the genetic

algorithm in MATLAB:

x = GeneticAlgorithm(CostFunction,NoOfUnknowns,LB,UB,minmax).
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(c) The function GeneticAlgorithm in turn calls the function CostFunction where

CostFunction =
N∑
i=1

wi

(
MarketPrice(i) −ModelPrice(i)

)2
.

(d) Finally, the algorithm should converge to a model parameter set that minimises

the cost function. This parameter set will be given as a vector output x.

A Note on the Implementation of the Genetic Algorithm

The MATLAB code for the genetic algorithm used in this project has been written by

the author. Initially, we set out the algorithm in the exact manner described above, but

encountered two problems with this specification. The first was that the method of selection

and linear fitness scaling that we used frequently allowed one individual to dominate the

algorithm, thus hampering the ability of the algorithm to find the globally fittest individual.

The second problem was that the algorithm would come close to, but not actually settle at

the global minimum. This last issue is one which plagues the genetic algorithm in general

— it does not guarantee convergence to the global minimum of a system.

The first problem was overcome by adapting the method of selection. Instead of us-

ing the method described above, we combined three selection methods. The first of these

automatically selects the fittest individuals in the population (usually the top 10% of the

population) to progress to the next generation. The second is a “tournament” selection

method, which randomly groups members of the population together (five members in our

implementation), arranges them according to each of their fitness levels and then proba-

bilistically chooses one individual to advance to the next generation. The fittest individuals

obviously have a greater chance of advancing than the weakest ones. In our implementa-

tion, this method was used to generate around 80% of the new population. Finally, the

third method randomly generates new individuals to complete the new generation. This

adds randomness and diversity to the selection routine. We found that these three methods

together provided a better selection routine for the genetic algorithm and they prevent any

individual from dominating the population. This routine also eliminates the need for linear

fitness scaling.

The second problem was overcome by selecting the parameter sets implied by the five

fittest individuals at the end of the GA routine and subjecting these to the least-squares

optimisation routine in MATLAB (lsqnonlin). This allows us to hone the results of the

genetic algorithm and ensure that the parameters produced by the optimisation routine do,
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in fact, lie at a minimum. Using more than one of the fittest individuals helps to ensure

that the algorithm does not settle in a local minimum.

4.2.2 Global Optimisation with Adaptive Simulated Annealing

Adaptive simulated annealing (ASA) is a global optimisation scheme which was developed

by Lester Ingber in the early 1990’s. It is arguably the most efficient of a number of different

simulated annealing (SA) schemes. The C-language code that can be used to implement it

is freely available on Lester Ingber’s homepage (see Ingber [30]). In addition, it is possible

to implement this routine in MATLAB thanks to a freely available function, ASAMIN,

written by Shinichi Sakata (see Moins [44], Sakata [50]). This function allows MATLAB to

interface directly with the C-language code and even allows MATLAB to change some of

the options in the ASA routine.

Simulated Annealing

Simulated annealing arose as a Monte-Carlo style optimisation scheme in 1983 to deal

with optimisation problems which involved highly nonlinear objective functions (Ingber

and Wilson [34]). The name of this algorithm is derived from the process of the annealing

of materials. Physically, this involves using heat-treatment in order to change the properties

of some solid material (often some type of metal) so that it can serve a specific purpose. The

solid is usually heated to very high temperatures and then cooled according to a specific

cooling (or temperature) schedule in order to achieve the desired result (e.g. to increase

the hardness of a metal so that it can be used to manufacture swords). SA works in the

same manner in that it has a “temperature” parameter which controls the search area of

the algorithm. Initially, this parameter will be set quite high, permitting the algorithm to

explore much of the objective (or cost) function surface in its search for a minimum value.

As the “temperature” parameter is lowered, the algorithm is forced to settle in a specific

region of the cost function and ultimately, converge to a minimum value. It has been shown

that the SA algorithm is statistically guaranteed to find a global minimum for the objective

function as long as the temperature schedule is carefully controlled. This is, however, not

guaranteed to occur in a finite amount of time (see Ingber and Wilson [34], Moins [44]).

The procedure followed by the SA algorithm can be laid out as follows (see Moins [44]):

1. Initialise the algorithm by stipulating the initial value of the temperature parameter

and providing an initial guess for the parameter values of the cost function.
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2. Use the chosen starting point of the algorithm to calculate the initial value of the cost

function.

3. Generate a random step size for the algorithm (randomly generate new parameter

values for the cost function) and calculate the new value of the cost function.

4. Subtract the new value of the cost function from the current value:

IF: CurrentCost−NewCost > 0, then accept the new state of the cost function

(i.e. accept the new parameter values for the function).

ELSEIF: exp
{

CurrentCost−NewCost
Temperature

}
> Uniform (0, 1) accept the new state of the

cost function.

ELSE: reject the new state of the cost function.

5. Decrease the “temperature” parameter according to the cooling schedule.

6. Exit the optimisation scheme if it has converged to a minimum. Otherwise repeat the

routine from step 3.

Evaluating the steps above gives a good indication of how the algorithm works and how

it can be used to find a global minimum value for the cost function. Firstly, the scheme

is not always forced to move downwards towards the nearest “trough” in the objective

function. It permits itself to make upward movements, away from any minimum values,

with a certain probability. This probability is controlled by the “temperature” parameter:

when the “temperature” is high, the probability that the algorithm accepts an upward

movement is close to one. As this parameter is decreased, so the algorithm settles in a

specific region of the objective function. This essentially allows the algorithm to “jump

around” the space occupied by the function until it can settle in a region where the global

minimum lies. Secondly, the generation of new parameter values depends on the value of the

“temperature” parameter and hence, the area of the objective function that the optimisation

routine is permitted to explore can be decreased by lowering this parameter. The cooling

schedule attached to the “temperature” parameter is consequently very important to the

success of the algorithm. In the case of SA, this is manually controlled by the user, making

it very difficult for the user to obtain the fastest convergence to a minimum value. As a

result, faster versions of the algorithm were developed. In 1987, the introduction of fast

annealing (FA) made it possible to statistically guarantee finding the optimum solution for

a system in a finite amount of time. Later in the same year, very fast simulated reannealing

(VFSR) was developed and ultimately became known as adaptive simulated annealing. This

provided further, significant decreases in the computational time of the SA procedure (see

Ingber and Wilson [34], Moins [44], Moodley [45]).
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Adaptive Simulated Annealing

As previously stated, the purpose of ASA is to provide a global optimisation scheme for

non-linear, non-convex objective functions which occupy an N dimensional space. ASA

does this by decreasing the “temperature” parameter of the ith unknown in the system,

Υ(i), according to the schedule

Υ
(i)
tk

= Υ
(i)
t0

exp
(
−cik

1
N

)
, (4.3)

where i = 1, . . . , N , tk refers to annealing time k and the parameter ci is used to help adapt

the algorithm to specific problems. Doing so automates much of the SA algorithm and

allows for a fast convergence of the algorithm to a statistically global minimum (see Ingber

[31, 32], Ingber and Wilson [34]).

Now, the ASA algorithm uses this parameter to sample new points in the N -dimensional

parameter space as follows. Consider a parameter θ
(i)
tk

with a range
[
α(i), β(i)

]
in the ith

parameter dimension and at annealing time k. The value of this parameter at annealing

time tk+1 can be generated according to

θ
(i)
tk+1

= θ
(i)
tk

+ z
(i)
tk

(
α(i) − β(i)

)
, (4.4)

where z
(i)
tk

is a random variable lying between -1 and 1. Ingber and Wilson [34] specify a

distribution for z
(i)
tk

in their paper. If we denote the cumulative density function of z
(i)
t at

some time t by F
(i)
t (z), we can sample from the distribution of z

(i)
t by applying the inverse

transform method. Here, we set F
(i)
t (z) = u

(i)
t , where u

(i)
t is distributed Uniform (0, 1), and

solve for z. Ingber and Wilson [34] show that ASA samples from the distribution of z
(i)
tk

at

annealing time k according to:

z
(i)
tk

= sign

(
u

(i)
tk
− 1

2

)
Υ

(i)
tk

(1 +
1

Υ
(i)
tk

)∣∣∣2u(i)tk −1
∣∣∣
− 1

 . (4.5)

As illustrated above, the key aspect of the simulated annealing and the adaptive sim-

ulated annealing schemes is the control of the “temperature” parameter. This parameter

influences much of how the algorithm functions and an adequate schedule for it is vital in

order to achieve a successful optimisation result. Other powerful options that ASA incorpo-

rates into its optimisation routine are reannealing and quenching. Reannealing essentially

allows the annealing-time specified by k to be rescaled according to the sensitivity of the

parameters of the objective function. This gives the algorithm more flexibility in how it

samples the parameter space. Quenching allows for the “temperature” parameter to be



4.2 Calibration Methods 61

quickly cooled in order to focus the algorithm on a specific region of the objective func-

tion and consequently speed up the optimisation task. Quenching can, however, have the

negative effect of preventing the algorithm from finding the true global minimum. Such

options can be selected according to the user’s requirements. This makes ASA a robust

optimisation routine and one that we make use of in our calibration algorithms. Further

documentation on the ASA is provided in Ingber [30].

ASAMIN

The ASAMIN programme developed by Shinichi Sakata (Sakata [50]) allows MATLAB

to interface with the C-language ASA code. This is most convenient for the purposes

of this dissertation as it allows us to use ASA to minimise the sum of squared market-

model differences in our calibration routines. Calling ASAMIN in MATLAB is achieved by

including the following command in the optimisation script:

[fout,xout,grad,hess,exit] = asamin(’minimize’,fun,x0,LB,UB,type),

with

fun - The objective function. fout - Value of the objective func-
tion at xout.

x0 - Initial parameter estimates. xout - Output vector.
LB - Lower parameter bounds. grad - Gradient of the objective

function at xout.
UB - Upper parameter bounds. hess - The Hessian of the objective

function at xout.
type - A vector of +1’s and -1’s indi-

cating integer or real outputs.
exit - Exit state of the algorithm.

Calibration With Adaptive Simulated Annealing

We are now in a position to use the ASA method for the purpose of model calibration to

option data. The ASA method is robust, but time-consuming. It can be implemented by

following the steps below.

1. As with the GA method, the most important input for this scheme is the option

price data. Again, we require option prices, along with maturities, spot prices of the

underlying, the risk-free rate of return and the dividend yield of the underlying.

2. We decide on a starting point for the model parameters. The choice of starting param-

eters in the case of the ASA method is not as delicate as that for local optimisation

schemes. Nonetheless, a good starting point will allow the method to converge faster.
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3. After the first two steps, we are ready to pass all the required data to the optimisation

routine.

(a) Denote the initial parameter estimates by x0 and the upper and lower parameter

bounds by UB and LB.

(b) Call the ASAMIN function in MATLAB:

xout = asamin(’minimize’,’CostFunction’,x0’,LB’,UB’,-[1,...,1]).

(c) The ASAMIN function in turn calls, and attempts to minimise, the function

CostFunction where

CostFunction =
N∑
i=1

wi

(
MarketPrice(i) −ModelPrice(i)

)2
.

(d) Finally, the algorithm should converge to a model parameter set that minimises

the cost function. This parameter set will be given as a vector output xout.

4.2.3 Local Optimisation with MATLAB lsqnonlin

MATLAB has a number of optimisation routines built into its Optimisation Toolbox. An

effective one for our purposes is the least-squares non-linear optimisation routine, lsqnonlin.

As its inputs, it takes a vector function (the sum of squares of which is to be minimised)

initial estimates for the function parameters as well as upper and lower parameter bounds.

The output is then the set of parameters which minimises the sum of squares. Importantly,

this routine is a local optimisation scheme and is sensitive to the initial parameter estimates.

This makes it a difficult routine to implement as a starting point for the algorithm is

tricky to select. The algorithm implemented by lsqnonlin by default, is the trust-region-

reflective method. Alternatively, it is possible to instruct the optimisation routine to use

the Levenberg-Marquardt method. More information on the algorithms used by lsqnonlin

can be obtained in the MATLAB literature (The MathWorks [56]).

Calibration With MATLAB lsqnonlin

The routine followed to implement a calibration routine with lsqnonlin is much like that for

the previous two routines. We implement it as follows:

1. Collect the same option data as for the previous two methods.

2. Like the ASA routine, lsqnonlin requires the input of initial parameter estimates.

Since it is a local optimisation scheme, however, the choice of these initial parameter
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values is important. Poorly chosen starting points will cause the algorithm to converge

to the incorrect answer.

3. After the first two steps, we are ready to pass all the required data to the lsqnonlin

routine.

(a) Let x0 be the initial parameter input vector. Define UB and LB to be the upper

and lower parameter bounds.

(b) Call the lsqnonlin function:

x = lsqnonlin(CostFunction,x0,LB,UB).

(c) In a similar, but not identical way to the previous routines, the lsqnonlin algo-

rithm in turn calls the vector function CostFunction, where the ith entry in the

vector is given by

CostFunction(i) = wi

(
MarketPrice(i) −ModelPrice(i)

)
.

The optimisation routine then computes the sum of squared model-market dif-

ferences implicitly.

(d) Finally, the algorithm should converge to a model parameter set that minimises

the cost function. This parameter set will be given as a vector output x.

4.3 Calibration Results Using Synthetic Data

We turn our attention now to the application of the above methods to the calibration

problems for the Heston, Bates and SVJJ models. To start with, we test our methods on

synthetic data. In order to generate this data, we need to devise our own model parameters

for the three models, use the fast Fourier transform pricing method to infer option prices

from the models and then calibrate the models to this pseudo-market data. This seems

like a rather “round-about” way of testing our calibration schemes. The purpose of doing

this, however, is to examine the speed and efficiency of the different calibration methods in

fitting the models to data which we know they ought to fit perfectly. Unlike the case where

real market data is used and we are uncertain about which model provides the best fit to

the data, or what the parameters of that model should be, this method gives us something

to aim at in our calibration routines. It also gives us good perspective about how sensitive

the schemes are to their initial inputs. We create the data by using model parameters1 as

specified in the following sections as well as maturity dates ranging from 0.25 years to 4

1Parameter values were chosen to be similar to those commonly seen in the literature.
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years in quarterly intervals and 25 strikes for each maturity. We keep the strikes constant

across all maturities. Some of the inspiration for this section is to extend the results of

Moodley [45].

We also evaluate below how our calibration procedures can be sped up by fixing the rate

of mean reversion in the volatility process. The motivation for doing this comes from Zhu

[59], who gives reasons and methods for doing so. To start with, the model parameter κ is a

very unstable parameter to fit. Setting it to some constant value can improve the stability

of the optimisation algorithms and reduce the time taken for the calibration procedures.

We examine the merits of doing so below.

4.3.1 Calibration of the Heston Model to Synthetic Data

Our synthetically generated data are obtained from the Heston model by using the FFT

pricing method and the following parameters:

κ = 1

θ = 0.04

σv = 0.2

ρ = − 0.3

V0 = 0.04.

Heston Calibration with the Genetic Algorithm

We start with the calibration of the Heston model to synthetically generated data. As

explained above, we use the GA routine in conjunction with the MATLAB lsqnonlin pro-

cedure to ensure convergence to a global minimum. In all our implementations of the GA

in this section we use the following algorithm settings:

• A population size of 300.

• A binary string length of 100 for each parameter.

• A total number of generations equal to 60.

• A crossover probability of 0.9.

• A mutation probability of 20/the total bit-string length of each individual.

In addition to this, each new generation is formed by selecting 70% of the new population

by tournament selection, 20% by taking the fittest individuals of the current population

and 10% by generating completely new individuals.
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Below we see that the results of this calibration are very good2. In both cases, where κ

is not fixed and where it is fixed, the calibration routine manages to converge to the true

parameter set. Figure 4.1 gives a graphic depiction of the deviation of the prices produced

by the calibrated parameter set from the original prices. We can see that there is very little

deviation. The value of the objective function with the calibrated parameters as inputs

is also very small, indicating convergence to a global minimum. Figure 4.2 depicts this

convergence.

Heston GA Calibration

Initial Parameter
Set

Parameter
Output (without

fixing κ)

Parameter
Output (holding
κ constant)

κ n/a 1.0001 -

θ n/a 0.0400 0.0400

σv n/a 0.2000 0.2000

ρ n/a −0.3000 −0.3000

V0 n/a 0.0400 0.0400

Cost Function Value 1.4961× 10−11 1.4961× 10−11

Calibration Time 1090 seconds 1065 seconds

Figure 4.1 Histograms illustrating the fit of the Heston model to synthetic data
using the GA routine. The plots show the deviation of the model implied prices
from the original, synthetic data. The plot on the right illustrates the calibration
performance when κ is held constant at 1. We can see that the GA and MATLAB
lsqnonlin combination yields a good fit to the synthetic option prices. Note that
the insert gives a magnified view of the histogram on the right and shows that
there is some deviation from the market prices.

2Note that for the global optimisation schemes in this section, we ensure that the search range for each

parameter is at least twice as large as the actual parameter value.
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Holding κ constant at one, we see that the accuracy of the calibration does not change

much. The time taken by the algorithm also remains much the same for both cases. As a

result, fixing κ does not improve our calibration with the GA to the Heston model data. The

times taken by the calibration routines indicate that this method is fairly computationally

intensive.

Figure 4.2 Plot showing the evolution of the fittest individual in the algorithm
across all generations for the Heston model calibration with the GA routine. We
can see that the fitness value of this individual approaches 1000 quickly. (Note
that we calculate our fitness value for each individual here by subtracting the mean
square differences of the model-market prices from 1000.) This plot gives further
evidence of the convergence of the algorithm to a global minimum value.

Heston Calibration with Adaptive Simulated Annealing

The ASA routine is the second that we implement for the purpose of calibrating the Heston

model to synthetic option data. Although the C-language ASA code has many options that

can be set prior to implementation, many of these cannot be altered in MATLAB. This

makes the MATLAB implementation of the optimisation scheme slightly limited. For the

application of this method to the calibration problem in the Heston model, we set the initial

parameter temperature value to 1000 and leave all the other ASA options at their default

values. As a result, we implement a more general version of the ASA routine, rather than

fine-tuning it to our specific situation.

In the tables and graphs below, we see good results for the scheme. For the set of

parameter inputs, the method manages to converge adequately to the true parameter values

associated with the synthetic data. Holding κ constant improves the calibration further by
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reducing the simulation time. Importantly, this method is not very sensitive to the initial

parameter sets and so yields similar calibration results, irrespective of the inputs. This

optimisation routine is even more computationally intensive than the GA method, although

the fit is not quite as good as can be seen from the values of the cost function for the two

calibrated parameter sets.

Figure 4.3 provides evidence of good calibration fits to the data. The final plot — Figure

4.4 — shows the convergence of the objective function to 0. This plot gives insight into how

the ASA routine works — it allows the objective function to “jump around” before settling

in an area close to the global minimum.

Heston ASA Calibration

Initial Parameter
Set

Parameter
Output (without

fixing κ)

Parameter
Output (holding
κ constant)

κ 1.5000 1.0067 -

θ 0.4000 0.0400 0.0400

σv 0.6000 0.2015 0.2011

ρ −0.6000 −0.2986 −0.2978

V0 0.4000 0.0400 0.0400

Cost Function Value 3.5233× 10−6 1.6825× 10−4

Calibration Time 3880 seconds 1150 seconds

Figure 4.3 Histograms illustrating the fit of the Heston model to synthetic data
using the ASA routine. We can see that the chosen starting points for the ASA
calibration routine yielded good fits for the Heston model. This is to be expected,
since ASA should not be very sensitive to starting points. Note that the plot on
the right shows the calibration result when κ was fixed to 1.
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Figure 4.4 Plot showing the convergence of the objective function to a minimum
during the calibration of the Heston model to synthetic data via ASA. This plot
shows of how the ASA routine searches the parameter space before settling down
at optimum point.

Heston Calibration with MATLAB lsqnonlin

The MATLAB lsqnonlin optimisation routine is the final one that we implement for cal-

ibration purposes for the Heston model. As mentioned earlier, it is a local optimisation

scheme and as such can be highly sensitive to initial parameter inputs. In the case of the

Heston model, we see good fits to the synthetic data. Many other initial parameter sets

that we used yielded similar results. The relatively low dimensional scale of the problem

means that the routine is quickly able to find the global minimum. Figures 4.5, 4.6 and

4.7 all give evidence of the success of this scheme. Notably, this routine is also much faster

than the previous two — making it an attractive one to implement. Later on, however, we

shall see that it suffers from over-sensitivity to initial inputs.

Heston MATLAB lsqnonlin Calibration (without fixing κ)

Initial
Parameter Set 1

Parameter
Output 1

Initial
Parameter Set 2

Parameter
Output 2

κ 1.5000 1.0001 4.2000 1.0000

θ 0.0900 0.0400 0.8500 0.0400

σv 0.1000 0.2000 0.0010 0.2000

ρ −0.5000 −0.2999 −0.9000 −0.2999

V0 0.0900 0.0400 0.9000 0.0400

Cost Function Value 4.8301× 10−10 2.0965× 10−12

Calibration Time 3.5 seconds 6.3 seconds
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We also implement this scheme whilst fixing κ to the value one. The intention of doing

so is to speed-up and improve the calibration of the model to the synthetic data. In the

case of the Heston model, our calibration scheme is already successful without fixing κ.

Nonetheless, doing so does decrease the calibration time and, as seen from the final values

of the cost-function, improves the fit.

Heston MATLAB lsqnonlin Calibration (holding κ constant)

Initial
Parameter Set 1

Parameter
Output 1

Initial
Parameter Set 2

Parameter
Output 2

θ 0.0900 0.0400 0.8500 0.0400

σv 0.1000 0.2000 0.0010 0.2000

ρ −0.5000 −0.3000 −0.9000 −0.3000

V0 0.0900 0.0400 0.9000 0.0400

Cost Function Value 4.7781× 10−13 6.7364× 10−13

Calibration Time 3.3 seconds 5 seconds

Figure 4.5 Histograms illustrating the deviation of the Heston model prices from
the original, synthetic data after calibration via the MATLAB lsqnonlin routine
(without fixing the value of κ). Both histograms show a good fit to the data.
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Figure 4.6 Plot showing the convergence of the objective function to a minimum
value during the calibration of the Heston model to synthetic data via MATLAB
lsqnonlin. Both plots show the objective function converging to 0, indicating that
the optimisation routine has found the global minimum in both cases.

Figure 4.7 Histograms illustrating the deviation of the Heston model prices from
the original, synthetic data after calibration via the MATLAB lsqnonlin routine.
We have fixed κ to 1 during the calibration. Again, both histograms give evidence
of a good calibration fit.
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4.3.2 Calibration of the Bates Model to Synthetic Data

Our synthetically generated data are obtained from the Bates model by using the FFT

pricing method and the following parameters:

κ = 1

θ = 0.04

σv = 0.2

ρ = − 0.3

V0 = 0.04

µJ = − 0.12

σS = 0.15

λ = 0.11.

Bates Calibration with the Genetic Algorithm

As with the Heston model, we implement a calibration technique for the Bates model based

on the GA. We use the same algorithm settings as we did in the case for the Heston model.

Again, the tables, histograms and final cost function values below show evidence of successful

calibrations to the synthetic data. The higher dimensionality of the problem does make the

implementation time for the method slightly longer. The jump parameters are also more

sensitive than the diffusion ones and, as a result, do not converge quite as well to their

true values. Nonetheless, the GA proves to be a robust method to use for the calibration

problem in the Bates model — especially since initial parameters are not required to start

the algorithm. Holding κ constant has little effect on the calibration result.

Bates GA Calibration

Initial Parameter
Set

Parameter
Output (without

fixing κ)

Parameter
Output (holding
κ constant)

κ n/a 0.9865 -

θ n/a 0.0403 0.0403

σv n/a 0.1998 0.1987

ρ n/a −0.2916 −0.2949

V0 n/a 0.0403 0.0404

µJ n/a −0.1803 −0.1747

σS n/a 0.1232 0.1352

λ n/a 0.0749 0.0727

Cost Function Value 9.4088× 10−8 1.4794× 10−7

Calibration Time 1400 seconds 1320 seconds
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Figure 4.8 Histograms illustrating the deviation of the Bates model prices from
the original, synthetic data after calibration using the GA. The histogram on the
right shows the calibration result when κ is held constant at 1. We can see that the
GA and MATLAB lsqnonlin combination yield a good fit to the synthetic option
prices.

Figure 4.9 Plot showing the evolution of the fittest individual in the algorithm
across all generations for the calibration of the Bates model to synthetic data
via the GA. We can see that the fitness value of this individual approaches 1500
quickly. (Note that we calculate our fitness value for each individual by subtracting
the mean square differences of the model-market prices from 1500). This plot gives
further evidence of the convergence of the algorithm to a global minimum value.
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Bates Calibration with Adaptive Simulated Annealing

Our results for the ASA calibration scheme for the Bates model are given below.

Bates ASA Calibration

Initial Parameter
Set

Parameter
Output (without

fixing κ)

Parameter
Output (holding
κ constant)

κ 2.5000 1.002 -

θ 0.2400 0.0382 0.0404

σv 0.1000 0.2364 0.2122

ρ −0.4500 −0.2931 −0.2856

V0 0.2400 0.0371 0.04

µJ −0.0700 −0.1174 −0.1637

σS 0.3000 0.0037 0.0948

λ 0.0500 0.4413 0.1031

Cost Function Value 8.1382× 10−5 5.897× 10−6

Calibration Time 8610 seconds 8690 seconds

Figure 4.10 Histograms illustrating the deviation of the Bates model prices from
the original, synthetic data after calibration via ASA. The plot on the right shows
the result where κ was held constant at a value of 1. The two results indicate that
while the ASA routine did not provide a poor fit to the data, it did not work as
well as the GA calibration method did.
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The results indicate a reasonable calibration fit, although not as good a result as that

obtained using the GA. We tried changing the initial parameter temperatures in an effort

to force the ASA algorithm to search the parameter space more thoroughly before settling

down. The results below were obtained using an initial parameter temperature of 1000.

Ideally, this method should easily locate the global minimum in the optimisation problem.

This has not quite been the case for the Bates model. A more thorough investigation into

the operations of the ASA routine as well as the implementation of the code in C would

probably yield better results. Nonetheless, this routine is quite time consuming and not

very practical to implement. Other initial parameter sets yielded similar results for the

calibration routine.

Bates Calibration with MATLAB lsqnonlin

With the calibration of the Bates model to synthetic data via the MATLAB lsqnonlin

routine, we see less convincing results compared to those for the Heston model. The first

initial parameter set yields good calibration results, as can be see from the histograms

and final cost function values below. The second initial parameter set, however, causes

the routine to converge to a parameter set quite dissimilar from the true set. The failure

of the MATLAB lsqnonlin routine to converge to a global minimum in this instance is

shown by the second plot of Figure 4.12 and by the final value of the objective function for

this calibration trial. These results begin to illustrate the sensitivity of the method to the

initial parameter set that is passed to the routine. Nonetheless, the initial parameters that

resulted in a breakdown of the method were rather extreme and for most initial sets chosen

reasonably close to the true set, the scheme yielded a successful calibration. The scheme

still provides a very fast way of calibrating the model to market data.

Bates MATLAB lsqnonlin Calibration (without fixing κ)

Initial
Parameter Set 1

Parameter
Output 1

Initial
Parameter Set 2

Parameter
Output 2

κ 0.7000 0.9869 0.0050 0.4893

θ 0.0800 0.0402 0.9000 0.0259

σv 0.1900 0.1998 0.9000 1.0000

ρ −0.2000 −0.2921 −0.9500 0.0000

V0 0.0800 0.0402 0.9000 0.0126

µJ −0.2000 −0.1605 −0.0010 −0.1663

σS 0.2500 0.1328 0.0010 0.0000

λ 0.0600 0.0858 0.0010 1.0000

Cost Function Value 3.5604× 10−7 6.7505× 10−2

Calibration Time 16.1 seconds 45.4 seconds
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Keeping κ fixed (i.e. excluding it from the calibration routine) can improve the calibra-

tion result (and speed) for poorly chosen initial parameters. We see this from the table

below.

Bates MATLAB lsqnonlin Calibration (holding κ constant)

Initial
Parameter Set 1

Parameter
Output 1

Initial
Parameter Set 2

Parameter
Output 2

θ 0.0800 0.0403 0.9000 0.0389

σv 0.1900 0.2016 0.9000 0.2251

ρ −0.2000 −0.2927 −0.9500 −0.3081

V0 0.0800 0.0403 0.9000 0.0379

µJ −0.2000 −0.1665 −0.0010 −0.1230

σS 0.2500 0.1285 0.0010 0.0072

λ 0.0600 0.0820 0.0010 0.3494

Cost Function Value 2.0549× 10−7 6.8103× 10−5

Calibration Time 8.3 seconds 22.2 seconds

Figure 4.11 Histograms illustrating the deviation of the Bates model prices from
the original, synthetic data after calibration via MATLAB lsqnonlin (without fixing
the value of κ). The histogram on the left shows that the optimisation routine
yielded a good fit to the data. The histogram on the right, however, gives evidence
of a poor calibration result due to poorly chosen initial parameters.
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Figure 4.12 Plot showing the convergence of the objective function to a minimum
value during the calibration of the Bates model to synthetic data via MATLAB
lsqnonlin. The plot on the left gives evidence of convergence to a global minimum,
whilst that on the right shows convergence only to a local minimum. Both plots
show that the MATLAB lsqnonlin routine moves steadily downwards.

Figure 4.13 Histograms illustrating the deviation of the Bates model prices from
the original, synthetic data after calibration via MATLAB lsqnonlin. We have
fixed κ to 1 during the calibration. An improvement in the fit as a result of fixing
κ is evident.
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4.3.3 Calibration of the SVJJ Model to Synthetic Data

Our synthetically generated data are obtained from the SVJJ model by using the FFT

pricing method and the following parameters:

κ = 3.5

θ = 0.008

σv = 0.2

ρ = − 0.8

V0 = 0.008

λ = 0.5

µS = − 0.9

σS = 0.0001

ρJ = − 0.4

µV = 0.05.

SVJJ Calibration with the Genetic Algorithm

As with the previous two models, the GA calibration method yields a good fit to the

synthetic SVJJ model data.

SVJJ ASA Calibration

Initial Parameter
Set

Parameter
Output (without

fixing κ)

Parameter
Output (holding
κ constant)

κ n/a 3.4930 -

θ n/a 0.0080 0.0080

σv n/a 0.2030 0.2029

ρ n/a −0.7863 −0.7859

V0 n/a 0.0080 0.0080

λ n/a 0.5000 0.5000

µS n/a −0.8999 −0.8999

σS n/a 0.0005 0.0010

ρJ n/a −0.4000 −0.3992

µV n/a 0.0500 0.0501

Cost Function Value 1.5921× 10−9 1.3181× 10−7

Calibration Time 1610 seconds 1520 seconds

The GA calibration routine has proved to be quite a robust method. It has provided

good fits to all three data sets in reasonable time, without the need for any initial inputs.
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Figure 4.14 Histograms illustrating the deviation of the SVJJ model prices from
the original, synthetic data after calibration via the GA. The histogram on the
right shows the calibration result for κ held constant at 3.5.

Figure 4.15 Plot showing the evolution of the fittest individual in the algorithm
across all generations during the calibration of the SVJJ model to synthetic data
via the GA. We can see that the fitness value of this individual gets very close to
5000 as the algorithm proceeds (note that we calculate the fitness value for each
individual by subtracting the mean square differences of the model-market prices
from 5000). This plot gives further evidence of the convergence of the algorithm
to a global minimum value.
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This has made it a very easy method to implement. Figures 4.14 and 4.15 show the success

of the GA calibration routine in providing a calibration fit for the SVJJ model. The final

cost function values also indicate that the calibration fit is a good one. As with the GA

calibration routine for the Heston and Bates models, keeping κ constant does not provide

a significant improvement in the calibration fit.

SVJJ Calibration with Adaptive Simulated Annealing

Our implementation of the ASA calibration routine for the SVJJ model yields similar results

to those for the application of the method to the Bates model. Again, we set the initial

temperature parameter of the ASA algorithm to 1000. The table and figure below show

that the method is reasonably successful. It does not, however, outperform the calibration

routing involving the GA. The higher dimensionality of the Bates and SVJJ models seems

to reduce the effectiveness of the ASA optimisation scheme. As we did for the application

of this method to the other two models, we can fix κ to a constant value throughout the

calibration procedure. Setting κ to 3.5 (essentially removing it from the calibration routine)

does provide an improvement to the calibration fit (as was the case for the Bates model).

SVJJ ASA Calibration

Initial Parameter
Set

Parameter
Output (without

fixing κ)

Parameter
Output (holding
κ constant)

κ 2.5000 3.3808 -

θ 0.0030 0.0098 0.0071

σv 0.1000 0.3340 0.1694

ρ −0.9500 −0.5595 −0.9319

V0 0.0030 0.0075 0.0084

λ 0.7500 0.4980 0.5009

µS −0.4500 −0.9057 −0.9025

σS 0.0003 0.0007 0.0009

ρJ −0.1500 −0.3969 −0.2817

µV 0.3500 0.0389 0.0585

Cost Function Value 1.0882× 10−4 1.8934× 10−5

Calibration Time 8638 seconds 10244 seconds

SVJJ Calibration with MATLAB lsqnonlin

Our implementation of the MATLAB lsqnonlin calibration routine yields similar results in

its application to the SVJJ model as it did for the Bates model. Again, it is the fastest

of the three calibration methods to implement. It suffers, however, from sensitivity to its

initial parameter inputs. This can be seen by comparing the results for the first and second
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Figure 4.16 Histograms illustrating the deviation of the SVJJ model prices from
the original, synthetic data after calibration via ASA. The plot on the left shows
the calibration result without fixing κ, whilst that on the right shows the result
where κ was held constant. The two results indicate that while the ASA routine
did not provide a poor fit to the data, it did not work as well as the GA calibration
method did.

initial parameter sets. The first set yields a good calibration fit, but the second set does

not. Figures 4.17 and 4.18 give evidence of this, showing that the lsqnonlin optimisation

routine only manages to locate a local minimum for this parameter set. The very high

dimensionality of the problem means that many of the parameters, especially the jump

parameters, are quite sensitive.

SVJJ MATLAB lsqnonlin Calibration (without fixing κ)

Initial
Parameter Set 1

Parameter
Output 1

Initial
Parameter Set 2

Parameter
Output 2

κ 4.5000 4.0127 0.3000 0.4389

θ 0.0180 0.008 0.4080 0.0481

σv 0.4000 0.2285 0.9500 0.9999

ρ −0.9000 −0.7546 −0.1000 0.0000

V0 0.0180 0.0081 0.4080 0.0030

λ 0.6500 0.5000 0.9500 0.5013

µS 0.7500 −0.8935 −0.0500 −0.9040

σS 0.000095 0.0007 0.000095 0.0010

ρJ −0.2000 −0.4816 −0.9500 −0.0012

µV 0.2500 0.0554 0.9500 0.0142

Cost Function Value 3.2514× 10−6 3.39× 10−2

Calibration Time 19 seconds 85 seconds
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Keeping κ constant throughout the calibration procedure does improve the fit as can be

seen in the table below. Consequently, we find that this is not a good calibration routine

to use for the SVJJ model, unless the value of κ can be fixed to an appropriate value and

good initial parameters can be found.

SVJJ MATLAB lsqnonlin Calibration (holding κ constant)

Initial
Parameter Set 1

Parameter
Output 1

Initial
Parameter Set 2

Parameter
Output 2

θ 0.0180 0.0080 0.4008 0.0080

σv 0.4000 0.2004 0.9500 0.2024

ρ −0.9000 −0.7980 −0.1000 −0.7893

V0 0.0180 0.0080 0.4080 0.0080

λ 0.6500 0.5000 0.9500 0.4999

µS 0.7500 −0.8998 −0.0500 −0.8990

σS 0.000095 0.0003 0.000095 0.0000

ρJ −0.2000 −0.4043 −0.9500 −0.4252

µV 0.2500 0.0499 0.9500 0.0497

Cost Function Value 1.5723× 10−9 4.6602× 10−8

Calibration Time 18 seconds 31 seconds

Figure 4.17 Histograms illustrating the deviation of the SVJJ model prices from
the original, synthetic data after calibration via MATLAB lsqnonlin (without fixing
the value of κ). The histogram on the left shows that initial parameters chosen
for the optimisation routine provided a good fit to the data. The histogram on
the right, however, gives evidence of a poor calibration result due to poorly chosen
initial parameters.
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Figure 4.18 Plots showing the convergence of the objective function to a minimum
value during the calibration of the SVJJ model to synthetic data via MATLAB
lsqnonlin. The plot on the left gives evidence of convergence to a global minimum,
whilst that on the right shows convergence only to a local minimum.

Figure 4.19 Histograms illustrating the deviation of the SVJJ model prices from
the original, synthetic data after calibration via MATLAB lsqnonlin. We have
fixed κ to 3.5 during the calibration. It is evident that doing so results in an
improvement in the fit.
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4.3.4 A Summary of Synthetic Data Calibration Results

From what we have seen, the GA calibration routine is the most robust method for all three

models. A major advantage of this method is that it does not require initial parameter

inputs, eliminating the need to decide on which initial inputs are appropriate and which

are not. It is also fairly easy to write code for the algorithm in any programming language.

This gives a lot of control to anyone wishing to implement the method, and makes it easy

to customise the algorithm to the specific needs of a certain optimisation problem. Thus,

although it is not the fastest method to implement, it is our preferred method. As a

consequence, we use it in the next section to calibrate the three models to real world data.

The other two calibration methods underperformed relative to the GA method. Notably,

the MATLAB lsqnonlin method proved to be quick to implement. It was, however, sensitive

to its initial input values and did, in some instances, converge to a point other than the

global minimum. Its combination, on the other hand, with the GA method proved to be

very successful. This hints at a use for such local optimisation routines — they are very

useful for honing the results of more complex global optimisation routines.

The ASA calibration scheme gave good results for the Heston model, but faired slightly

worse when applied to the Bates and SVJJ models. It is also computationally cumbersome.

Nonetheless, it is not very sensitive to initial parameter inputs and so it faired better than

the lsqnonlin method. If more time were spent customising the algorithm to the specific

problems at hand, it might give better results. Given the ease and simplicity of implementing

the GA scheme, however, we still favour it over the ASA scheme.

4.4 Calibration Results Using Market Data

In this section, we calibrate our models to ALSI futures options data, as well as S&P

500 options data. For both sets of data, we use the genetic algorithm calibration method

discussed above to obtain fits for our three models. Data for ALSI futures options can be

obtained from the South African Futures Exchange (SAFEX) website [54] and data for S&P

500 options can be bought from Market Data Express (http://www.marketdataexpress.

com).

4.4.1 Calibration to ALSI Options Data

South African ALSI options are based on the JSE Top 40 Index, referred to as the TOPI.

Information for these contracts can be obtained from the SAFEX website (see SAFEX [54]

http://www.marketdataexpress.com
http://www.marketdataexpress.com
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and the JSE [55]). They are American style futures options and expire on the third Thursday

of every expiration month. The options traded on the exchange are also margined, meaning

that the option purchaser does not pay outright for the option at inception. Rather, he pays

an initial margin at inception and then updates this based on the daily change in the mark-

to-market value of the option. The call pricing formula used by SAFEX for mark-to-market

purposes is as follows:
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where F is the value of the underlying futures contract and K is the strike price of the

option. A similar formula holds for put options. This formula is similar to the Black pricing

formula. Here, no risk-free rate is accounted for due to the daily margining requirements

of the exchange. Moreover, it can be shown that the early exercise of calls and puts is not

optimal (in spite of their structure), and so we can treat them as European options. This

is convenient for our purposes, as we have only considered pricing formulas for European

style contracts. See West [58] for a thorough treatment of this topic.

The exchange publishes daily implied volatility data as well as the mark-to-market prices

of the ALSI options. We choose to calibrate to 76 options on the 11 May 2011, with strike

prices ranging from 24000 to 36000 index points on an underlying of 28933 points. The

maturity dates on the options range from 1 month to 10 months in quarterly intervals.

Consequently, the market is fairly illiquid. We calibrate our models to this data using the

GA routine with a population size of 1000 over 100 generations. Since we are dealing with

futures options, we need not worry about dividend rates. The table below shows the results

of our calibration.

Model Calibration to ALSI Futures Options Data

Heston
Parameters

Bates
Parameters

SVJJ
Parameters

κ 0.0710 0.0924 0.2467

θ 0.8089 0.4520 0.1925

σv 0.4273 0.3172 0.3293

ρ −0.7504 −0.7825 −0.7682

V0 0.0387 0.0367 0.0366

λ - 0.0081 0.0082

µS - −4.9953 −4.6717

σS - 0.0135 0.0000

ρJ - - −1.0000

µV - - 2.1746

Cost Function Value 1.6657× 103 1.4541× 103 1.0985× 105

Calibration Time 2095 seconds 2972 seconds 4302 seconds
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Figure 4.20 Histograms showing
the fits of the three models to the
ALSI options data. The plots de-
pict the deviation of model prices
using calibrated parameters from
market prices, as a percentage of
strike. We see that the fits of all
three models are quite reasonable.

Figure 4.21 Plots showing the fit of the Heston model to ALSI implied volatility
skews. The model provides a good fit for implied volatilities which are close to
ATM. The fit for ITM and OTM options is not quite as good. The model also
does not generate much skewness, particularly in the short term, and so probably
provides the best fit to the data (given the shapes of the market skews).
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Figure 4.22 Plots showing the fit of the Bates model to ALSI implied volatility
skews. In the long-term, the Bates model is able to capture the shape of the implied
skew quite well. In the short term, the model generates too much skewness and
steepness resulting in a poorer fit than that for the Heston model.

Figure 4.23 Plots showing the fit of the SVJJ model to ALSI implied volatility
skews. The results for the SVJJ model are similar to those for the Bates model.
It provides a good fit to the skew in the long term, but not such a good fit to that
in the short term.
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4.4.2 Calibration to S&P 500 Options Data

The S&P 500 index is an index of 500 stocks traded on the NYSE, the AMEX and the

Nasdaq in the United States of America. The stocks selected for the index are not necessarily

those from the 500 largest companies on these exchanges, but rather, they are selected

from 500 companies which are deemed to be the most important companies in the most

influential economic sectors in the USA. The index has come to be one of the most analysed

and referenced indices in the world. Options traded on the S&P 500 are very liquid and, as

a result, are often used by financial engineers for calibration and model testing purposes.

Information on S&P 500 options can be obtained from the CBOE website [17]. The

options on the index are European in style and expire on the Saturday after the third

Friday of a given expiration month. There can be as many as twelve “near-term” months

in which the options expire and it is possible to find options going out to five years. Strike

prices on the options can be as near as five index points apart for short dated options.

Longer dated options tend to have fewer and further spaced strikes. The options settle for

cash at their expiry.

Below, we calibrate the Heston, Bates and SVJJ models to last-trade option data on the

index from the 11 May 2011. We use the genetic algorithm approach discussed above to

do so and allow the algorithm to run for 100 generations, with 1000 individuals in each

generation. The option data that we use comprise 148 options on an underlying of 1342.08

points. The strike prices considered range from 1200 to 1600 and the maturity dates extend

from 10 days to 2.6 years. We also set the risk-free rate to a constant value of 0.5% and the

dividend yield to 1.8%. The data are obtained from the Market Data Express website.

Model Calibration to S&P 500 Options Data

Heston
Parameters

Bates
Parameters

SVJJ
Parameters

κ 1.3887 6.4866 1.8370

θ 0.0780 0.0587 0.0263

σv 0.6126 2.0592 0.1594

ρ −0.8208 −0.7342 −1.0000

V0 0.0273 0.0236 0.0202

λ - 0.0059 0.0488

µS - −1.8801 −1.1868

σS - 0.8393 0.0010

ρJ - - 0.0196

µV - - 0.0000

Cost Function Value 1.1987× 106 3.987× 103 8.7379× 103

Calibration Time 5115 seconds 6768 seconds 7554 seconds
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Figure 4.24 Histograms showing
the fits of the three models to the
S&P 500 options data. The plots
depict the deviation of model prices
using calibrated parameters from
market prices, as a percentage of
strike. We see that the fits of all
three models are quite reasonable.

Figure 4.25 Plots showing the fit of the Heston model to S&P 500 implied volatil-
ity skews. We can see here that the Heston model provides a good fit to the
long-dated skews. It cannot quite capture the skewness in the short-term however.



4.4 Calibration Results Using Market Data 89

Figure 4.26 Plots showing the fit of the Bates model to S&P 500 implied volatility
skews. The Bates model provides a good fit to both the short and long-dated skews.
Unlike the Heston model, it is able to generate sufficient skewness in the short term
and, out of the three models, probably provides the best fit to the skews.

Figure 4.27 Plots showing the fit of the SVJJ model to S&P 500 implied volatility
skews. The SVJJ model yields a good fit to both the short and long-dated skews.
The model is more than capable of generating sufficient short term skewness.
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4.4.3 A Summary of Market Data Calibration Results

The calibration results3 for the ALSI options data suggest that the Heston and Bates models

provide the best fits. The shape of the ALSI implied volatility skew is steep, but straight,

at all maturities. Since the Heston model generates the least skewness and kurtosis out of

the three models, it would seem to be the best model to fit to the option data. The implied

volatility plots for the Bates and SVJJ models both indicate that the models generate too

much skewness in the short term to provide a good fit to the ALSI skew. We thus favour

the Heston model for calibration to ALSI option data (out of the three models). It must

be stated, however, that the ALSI market is relatively illiquid which makes it difficult to

calibrate models to its implied volatility surface.

By way of reference, two sources that have dealt with similar subject matter to us are

those by West [58] and Kotzé and Joseph [37]. These two works are both concerned with

fitting models to option data from options on the South African Top 40 index. Specifically,

the paper by West deals with the calibration of the SABR model to data on this index,

whilst that by Kotzé and Joseph presents the use of a quadratic deterministic model to

fit the Top 40 implied volatility surface. This dissertation is in a similar vein to these

two, as we have also presented methods for calibrating models to data on the South African

market. More specifically, we attempt to fit stochastic volatility models to the whole implied

volatility surface, which is an issue that is not explored in these works. We recommend that

the reader refer to these sources as they provide a thorough investigation into this topic.

The calibration results for the S&P 500 index options are quite different to those for the

ALSI options. We see that the volatility smile for the S&P 500 index is quite pronounced

in the short term and flattens out in the long term. The Heston model is unable to satisfy

these characteristics. It cannot generate sufficient skewness and kurtosis in the short term,

while still providing a relatively flat skew in the long term. Instead, we require jumps in

the stock price process and possibly in the volatility process too, in order to fit volatility

surfaces with such characteristics. Out of the two jump models, the Bates model gives a

slightly better fit to the S&P 500 index than the SVJJ model does. This agrees with the

results of Gatheral [25], who performs a similar calibration and finds that a Bates-style

model fits S&P 500 data better than the other two models do. He finds that the increased

3We ensure that the search range for each parameter in the GA calibration routine is sufficiently large.

For example, for the SVJJ model, we search for κ in the interval [0, 10], θ in [0, 1], σv in [0, 5], ρ in [−1, 1], V0

in [0, 1], λ in [0, 5], µS in [−5.5], σS in [0, 0.001] (since the parameter is quite sensitive and usually observed

to be quite small in the literature), ρJ in [−1, 1] and µV in [0, 5]. Identical ranges were used for the other

two models (excluding those for the parameters which are not relevant in these models).
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number of parameters of the SVJJ model relative to a model with jumps in the stock price

process only makes it harder to calibrate to market data and states this as the main reason

for the poorer fit of the SVJJ model.

The results of the S&P 500 index fit are particularly relevant because they highlight the

role that jump models with stochastic volatility can play in modeling implied volatility

surfaces. Markets with such dynamics clearly require the use of models that can generate

sufficient skewness and kurtosis to fit the short end of the implied volatility surface, while

still being able to fit the long end of the surface. Models such as the Heston model are

unable to do this, whereas including jumps in the stock price and possibly the volatility

processes provides a solution to the dilemma. This conclusion is reached by numerous other

authors (Bakshi et al. [3], Bates [5], Broadie et al. [10], Duffie et al. [22], Gatheral [25]) and

justifies the use of higher dimensional models such as the Bates and SVJJ models.

4.4.4 A Comment on Calibration Speed Improvements with Parallel Com-

puting Methods for the Genetic Algorithm

A slight divergence from the rest of the section, but nonetheless, a relevant consideration

for the calibration of models to market data is the parallelisation of optimisation routines.

The FFT pricing routine already provides a fast pricing scheme through which option price

models can be calibrated to market data. This occurs as a result of its ability to compute

option prices with a given maturity for a large range of strikes simultaneously. Other

methods, which can only compute one option price at a time slow down the calibration

routines dramatically. Nonetheless, the implementation of these schemes can be sped up

further through the use of parallel computing methods. We have two options to do so. We

can either implement the routines on multiple CPU cores or we can implement them on a

GPU.

The implementation of the GA in parallel on the multiple cores of a CPU can be accom-

plished in MATLAB through the use of the parfor command. The only part of the GA

that is computationally intensive is the computation of the fitness values of the population

individuals in each generation of the algorithm. Inserting a parfor loop around this part

of the algorithm could provide a speed-up to the calibration routine. Unfortunately, in

our implementation of this method, we only achieved about a 2 times speed-up (on the six

cores of the Intel i7 CPU). The reason for the rather poor improvement was a result of an

increased computation time for each evaluation of the FFT routine in parallel compared

to that in serial. This is most likely due to excessive communication overhead in passing
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variables to and from the cores of the CPU. A further research topic of interest would be

to explore the successful implementation of this algorithm in parallel to get significant re-

ductions in calibration times. Such research would improve the feasibility of implementing

the GA calibration routine in practice.

The implementation of the FFT pricing routine on a GPU could also yield further speed

improvements for the calibration routines that we have considered so far. Since GPU’s

are well suited to the computation of FFT’s (due to their gaming origins), they would be

very useful for such applications. Indeed, some of the worlds fastest computers today are

now making use of GPU’s to speed up many simulations that were previously computed on

multiple CPU’s. In our attempt to implement the GA calibration routine on a GPU, we were

met with many restrictions due to the still underdeveloped ability of MATLAB to interface

with a GPU. MATLAB is unable to implement routines such as the parfor routine on a GPU,

making it difficult to simulate the GA calibration routine on the GPU. Instead, we simply

attempted to evaluate each call of the FFT on the GPU. This, however, resulted in the need

to transfer large matrices to and from the GPU, increasing the communication overhead

and slowing down the routine. In the end, we saw no speed improvements as a result of

implementing the calibration routine on the GPU. Further research in this area would be

very useful and would yield ways of achieving large speed improvements for optimisation

routine such as the GA.



Chapter 5

Hedging

The final theme of this dissertation is hedging. The calibration of models to market data, as

well as option pricing methods for these models provide us with only half the tools for the

successful trading of options. The methods that we employ to hedge the options once they

have been traded are as important as using appropriate and properly calibrated models.

Traditionally, the Black-Scholes-Merton framework (Black and Scholes [7], Merton [42])

gave practitioners a simple and effective method (at least in theory) to fully hedge their

option positions. Vanilla European calls and puts could simply be replicated by buying and

selling stock, according to the delta of the option, to ensure that the payoff of the option and

that of the hedging portfolio matched at maturity. The simplicity of hedging in the Black-

Scholes-Merton world results since the only source of uncertainty in the model is due to the

driving Brownian motion in the stock price process. This risk can be offset by trading in the

underlying asset and as a result, every contingent claim can be hedged. According to the

second Fundamental Theorem of Asset Pricing, this implies that the market is complete and

the equivalent martingale measure in the model is unique (see Shreve [53]). Unfortunately,

when dealing with stochastic volatility models, we do not have the luxury of working in

complete markets and the equivalent martingale measure in the model is no longer unique.

This complicates the hedging schemes that must be used to hedge options priced under these

models. One approach to constructing hedging portfolios that provide an improved hedge

is to consider traded vanilla options which are considered to be as liquid as the underlying.

Hedging portfolios can then include vanilla options to offset volatility risk. Adding jumps

to stochastic volatility models makes hedging even trickier and if jump magnitudes are

unbounded, the jump risk in the model cannot be hedged away completely.

93
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There are many articles and books that tackle the hedging problem in incomplete markets.

Some of the more popular topics of investigation in these works include mean-variance

hedging, mean-self-financing hedging and superhedging. Bingham and Kiesel [6] give a

thorough overview of mean-variance hedging. This method essentially entails finding a self-

financing strategy that, with minimal variance, gives an approximation to the payoff of a

financial instrument (such as an option). Fouque et al. [24] illustrate a mean-self-financing

option hedging strategy, involving only bonds and the underlying stock that, on average,

does not require the input of additional funds, nor does it result in the outflow of funds.

Cont and Tankov [20] give an overview of superhedging schemes, which entail finding self-

financing strategies that always produce a greater payoff than that of the instrument that

they are hedging.

In our brief investigation of hedging strategies for the Heston, Bates and SVJJ models,

we draw from the paper by Kurpiel and Roncalli [38]. They compare three option hedging

strategies — a delta hedging scheme, a delta-sigma hedging scheme and a delta-sigma-

gamma hedging scheme — which use option price sensitivities to the underlying parameters

(i.e. the stock price and volatility) to construct hedging portfolios. In doing so, they make

use of vanilla options to construct hedges for the option under consideration. For our

implementation of their methods, we consider a vanilla call option as the primary option.

The parameters of this option are given in the simulation parts of this chapter. It might

seem somewhat counterintuitive to use vanilla options to hedge a position in a vanilla option;

however, we proceed in this way in order to illustrate the effectiveness of this method. In

further research, it would also be possible to extend this analysis to the case of exotic

options, which would be more realistic than the current setting. We will see that these

methods are effective for the Heston model, but less so for the other two models due to the

presence of jumps.

5.1 A Change of Measure in the Heston Model

In the preceding sections of this dissertation, we have concerned ourselves only with models

under an appropriate risk-neutral measure. This was acceptable since we used the risk-

neutral formulations of the models for the pricing of options as well as the calibration of

the models to option data, both of which take place under the risk neutral measure (since

calibration to option data essentially allows us to estimate the risk-neutral parameters of

the models and so no transformation to the risk-neutral world is required). For the purpose

of hedging however, it is useful to consider risk-neutral transformations.
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The formulation of the Heston model can be expressed as follows under the real-world

measure:

dSt = µStdt+
√
VtStdZ

(1)
t

dVt = κ (θ − Vt) dt+ σv
√
Vt

[
ρdZ

(1)
t +

√
1− ρ2dZ

(2)
t

]
,

where Z
(1)
t and Z

(2)
t are independent Brownian motions. A change of measure in this model

is as a result of Girsanov’s Theorem (see Shreve [53]).

Theorem 4 (Girsanov in N Dimensions). Define a probability space (Ω,Ft,F ,P), where

T > 0 is a fixed time and t ∈ [0, T ], P is the real-world (objective) measure on that space

and F = FT . Upon this probability space, define an N -dimensional Brownian motion

Zt =
(
Z

(1)
t , Z

(2)
t , . . . , Z

(N)
t

)
where N is a positive integer. Let Θt =

(
Θ

(1)
t ,Θ

(2)
t , . . . ,Θ

(N)
t

)
be a N -dimensional measurable and adapted process. Define

ζt = exp

{
−
∫ t

0
Θu · dZu −

1

2

∫ t

0

N∑
i=1

(
Θ(i)
u

)2
du

}
(5.1)

and

dZ̃t = dZt + Θtdt, (5.2)

assuming that Θt satisfies Novikov’s condition:

E

[
exp

(
1

2

∫ T

0

N∑
i=1

(
Θ(i)
u

)2
du

)]
<∞.

For convenience, we set ζ = ζT so that E [ζ] = 1. Now, under the risk-neutral probability

measure P̃, where

P̃ (A) =

∫
A
ζ (ω) dP (ω) , for all A ∈ F , (5.3)

the process Z̃t =
(
Z̃

(1)
t , Z̃

(2)
t , . . . , Z̃

(N)
t

)
is a N -dimensional Brownian motion.

We refer to the works of Chernov and Ghysels [16] as well as Fouque et al. [24] for our

treatment on the risk-neutral transformation in the Heston model. The aim of the risk-

neutral transformation is to find a measure, equivalent to P, under which the discounted

stock price process is a martingale. In the case of the Heston model, such a measure is

not unique, so we denote a chosen equivalent martingale measure by P̃(ϕ). Through the

application of Girsanov’s Theorem, we can construct the P̃(ϕ)-Brownian motions, Z̃
(1)
t and

Z̃
(2)
t . The Radon-Nikodým derivative process can then be defined by:

ζt = exp

{
−1

2

∫ t

0

[(
Θ(1)
u

)2
+
(

Θ(2)
u

)2
]
du−

∫ t

0
Θ(1)
u dZ(1)

u −
∫ t

0
Θ(2)
u dZ(2)

u

}
, (5.4)
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such that,

dZ̃
(1)
t = dZ

(1)
t + Θ

(1)
t dt (5.5)

dZ̃
(2)
t = dZ

(2)
t + Θ

(2)
t dt, (5.6)

where

Θ
(1)
t =

µ− r√
Vt

(5.7)

is the market price of return risk and

Θ
(2)
t = ϕt (5.8)

is the market price of volatility risk. Under P̃(ϕ), our two processes become

dSt = µStdt+
√
VtSt

[
dZ̃

(1)
t −Θ

(1)
t dt

]
= St

[
µ−

√
VtΘ

(1)
t

]
dt+

√
VtStdZ̃

(1)
t

= rStdt+
√
VtStdZ̃

(1)
t (5.9)

and

dVt = κ (θ − Vt) dt+ σv
√
Vt

{
ρ
[
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(1)
t −Θ

(1)
t dt

]
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√
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+ σv
√
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[
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(1)
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t
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, (5.10)

where

θ(ϕ) = θ − σvρ (µ− r)
κ

− σv
√
Vt
√

1− ρ2ϕt
κ

. (5.11)

The market price of volatility risk stems from the driving Brownian motion in the volatility

process. Since the equivalent martingale measure in the model depends on the market

price of volatility risk, different calibrations of ϕt will be coupled to various risk-neutral

transformations under the model. As a result, ϕt can be seen to parameterise the space of

risk-neutral measures (Fouque et al. [24]).

The results above imply that a contingent claim in the Heston model market cannot be

replicated by trading bonds and the underlying stock alone. This can be illustrated by

considering the Martingale Representation Theorem (see Shreve [53]).
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Theorem 5 (The Martingale Representation Theorem in N Dimensions). As for Gir-

sanov’s Theorem, consider a probability space (Ω,Ft,F ,P) with a N -dimensional Brownian

motion, Zt defined on that space (t ∈ [0, T ]). We suppose that the filtration Ft is generated

by the Brownian motion Zt. Next, defining on the probability space a P-martingale, Mt,

with respect to this filtration, we can state that there exists a N -dimensional, adapted and

square-integrable process ϑt =
(
ϑ

(1)
t , ϑ

(2)
t , . . . , ϑ

(N)
t

)
where

Mt = M0 +

∫ t

0
ϑu · dZu. (5.12)

Considering the case under the Heston model, Ft is generated by the Brownian motions

driving the stock price and volatility processes — Z̃
(1)
t and Z̃

(2)
t . Moreover, the discounted

risk-neutral pricing function Yt = e−rtHt, where

Ht = Ẽ(ϕ)
t

[
e−r(T−t)HT

]
,

is a martingale with respect to P̃(ϕ), given the filtration up to time t (HT is the time T

payoff of a contingent claim). By the martingale representation theorem, we can state that

Yt = Y0 +

∫ t

0
ϑ(1)
u dZ(1)

u +

∫ t

0
ϑ(2)
u dZ(2)

u (5.13)

for adapted and square-integrable processes ϑ
(1)
t and ϑ

(2)
t . Now, we can use this to write a

self-financing trading strategy for the contingent claim, HT , of the form (see Fouque et al.

[24]):

dHt = αtdSt + βtre
rtdt+ γtdVt

for some αt, βt, γt. Notably, the presence of Z
(2)
t in the martingale representation of Yt forces

us to construct a self-financing strategy in terms of the volatility of the stock. This means

that we cannot use bonds and the underlying stock alone to hedge the derivative, which is

undesirable since volatility is not a traded asset. As a result, if we want to include only the

stock and bonds in our hedging portfolio, we need to construct replicating portfolios that

minimise our hedging losses (or that are mean-self-financing). We can also include traded

options in our replicating portfolio so as to hedge the volatility risk (thus including vanilla

options in the list of market traded assets). Such a strategy can be undesirable when we

are faced with high transaction costs and illiquid options markets.

5.2 Hedging Strategies for the Heston Model

We turn our attention to the construction of hedging portfolios using bonds, the underlying

stock and other options. Much of our inspiration comes from the paper by Kurpiel and

Roncalli [38].
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5.2.1 Delta Hedging in the Heston Model

Consider a portfolio, Πt, consisting of a long position in a call option, C (St, Vt, T,K), and

a short position in δ
(S)
t units of the underlying stock St. As usual, t ∈ [0, T ], where T is the

maturity of our option. We also assume that the stock price, St, follows the dynamics of the

Heston model (already defined), with Vt denoting the volatility process. The infinitesimal

change in the value of this portfolio is given by (using a simplified notation)

dΠ = dC − δ(S)dS

=

[
∂C

∂t
+

1

2
V S2∂

2C

∂S2
+ ρσvV S

∂2C

∂V ∂S
+

1

2
σ2
vV

∂2C

∂V 2

]
dt

+

[
∂C

∂S
− δ(S)

]
dS +

∂C

∂V
dV (5.14)

by Itô’s lemma. To make the portfolio delta-neutral, we set

∂C

∂S
− δ(S) = 0

and so

δ(S) =
∂C

∂S
. (5.15)

The instantaneous variance of the portfolio value is given by

d 〈Π,Π〉t =

(
∂C

∂V

)2

σ2
vV dt, (5.16)

where d 〈X,Y 〉t denotes the covariation of two stochastic processes Xt and Yt. Clearly,

delta-hedging does not eliminate all the risk in the portfolio — it only eliminates risk in

the portfolio resulting from the randomness in the stock price process. Residual risk still

remains as a result of the random component in the volatility process. To hedge this risk,

we need to consider other options on the same underlying as traded assets and include

them in the portfolio. This results in what Kurpiel and Roncalli [38] name the delta-sigma

hedging procedure.

5.2.2 Delta-Sigma Hedging in the Heston Model

Again, we consider a portfolio, Πt, which is comprised of a long position in a call option,

C (St, Vt, T,K), and a short position in δ(S) units of the underlying stock St. In addi-

tion to this, however, we also include a short position in δ(H1) units of another option,

H1 (St, Vt, T1,K1) written on the same underlying as our original option. The infinitesimal
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change in the value of our portfolio is now given by

dΠ = dC − δ(S)dS − δ(H1)dH1

=

[
∂C

∂t
+

1

2
V S2∂

2C

∂S2
+ ρσvV S

∂2C
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+

1

2
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]
dt

− δ(H1)

[
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+ ρσvV S
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2
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∂V 2

]
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+
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− δ(H1)∂H1

∂S
− δ(S)

]
dS +

[
∂C

∂V
− δ(H1)∂H1

∂V

]
dV. (5.17)

To make this portfolio instantaneously risk-free, we set

∂C

∂S
− δ(H1)∂H1

∂S
− δ(S) = 0

and

∂C

∂V
− δ(H1)∂H1

∂V
= 0.

This gives us the hedging ratios

δ(H1) =
∂C/∂V
∂H1/∂V

(5.18)

δ(S) =
∂C

∂S
− δ(H1)∂H1

∂S
. (5.19)

Unlike the case with delta-hedging, the instantaneous variance in this portfolio is now

0. The delta-sigma hedging scheme solves the hedging problem in the Heston model —

adding a traded option to the hedging portfolio allows for a perfect hedge (if trading occurs

continuously and there are no transaction costs). Note that δ(H1) is the ratio of the vegas

of the two options, and δ(S) is expressed in terms of the deltas of the two options. Our

next step is to discretise this hedging scheme to allow for a more practical approach to

the hedging problem. This introduces errors into the hedging scheme and so we include a

gamma hedging component to improve the discrete hedge.

5.2.3 Delta-Sigma-Gamma Hedging in the Heston Model

In a similar way to the subsections above, consider a portfolio at time t given by

Πt = Ct − δ(S)
t St − δ(H1)

t H1,t − δ(H2)
t H2,t, (5.20)

where H1 and H2 are distinct exchange traded options dependent on the same underlying

asset. If instead of re-balancing the portfolio continuously, we only re-balance it at equally
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spaced, discrete points in time, where the distance between successive points is ∆t, then

the change in the value of the portfolio over an interval [t, t+ ∆t] is given by

Πt+∆t −Πt = ∆Πt.

Dropping the subscripts and applying the Taylor expansion about S, V and t we get

∆Πt = ∆C − δ(S)∆S − δ(H1)∆H1 − δ(H2)∆H2

=

[
∂C

∂S
− δ(H1)∂H1

∂S
− δ(H2)∂H2

∂S
− δ(S)

]
∆S +

[
∂C

∂V
− δ(H1)∂H1

∂V
− δ(H2)∂H2

∂V

]
∆V

+

[
∂C

∂t
− δ(H1)∂H1

∂t
− δ(H2)∂H2

∂t

]
∆t+

1

2

[
∂2C

∂S2
− δ(H1)∂

2H1

∂S2
− δ(H2)∂

2H2

∂S2

]
(∆S)2

+
1

2

[
∂2C

∂V 2
− δ(H1)∂

2H1

∂V 2
− δ(H2)∂

2H2

∂V 2

]
(∆V )2

+
1

2

[
∂2C

∂t2
− δ(H1)∂

2H1

∂t2
− δ(H2)∂

2H2

∂t2

]
(∆t)2

+ . . . (Cross-terms and higher order terms). (5.21)

Now, to make the portfolio delta, gamma and vega neutral we set[
∂C

∂S
− δ(H1)∂H1

∂S
− δ(H2)∂H2

∂S
− δ(S)

]
= 0[

∂2C

∂S2
− δ(H1)∂

2H1

∂S2
− δ(H2)∂

2H2

∂S2

]
= 0[

∂C

∂V
− δ(H1)∂H1

∂V
− δ(H2)∂H2

∂V

]
= 0

respectively. Solving yields the following hedging ratios:

δ(H1) =
∂H2
∂V

∂2C
∂S2 − ∂C

∂V
∂2H2
∂S2

∂H2
∂V

∂2H1
∂S2 − ∂H1

∂V
∂2H2
∂S2

=
V(H2)Γ(C) − V(C)Γ(H2)

V(H2)Γ(H1) − V(H1)Γ(H2)
(5.22)

δ(H2) =
∂2C
∂S2 − δ(H1) ∂2H1

∂S2

∂2H2
∂S2

=
Γ(C) − δ(H1)Γ(H1)

Γ(H2)
(5.23)

δ(S) =
∂C

∂S
− δ(H1)∂H1

∂S
− δ(H2)∂H2

∂S
= ∆(C) − δ(H1)∆(H1) − δ(H2)∆(H2), (5.24)

where ∆, Γ and V denote the delta, gamma and vega of the respective options. Note,

particularly the notational difference between ∆ and ∆. The former is used to describe the

change in the variable it prefixes. The latter is used to describe the delta of an option.
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The variance of ∆Πt can be shown, approximately, to be (see Kurpiel and Roncalli [38])

V [∆Πt |Ft ] ≈
1

4

[
∂2C

∂V 2
− δ(H1)∂

2H1

∂V 2
− δ(H2)∂

2H2

∂V 2

]2

V
[
(∆V )2 |Ft

]
≈ 1

4

[
∂2C

∂V 2
− δ(H1)∂

2H1

∂V 2
− δ(H2)∂

2H2

∂V 2

]2 (
σv
√
V
)4

V
[
(∆t)Y 2 |Ft

]
(where Y ∼ N (0, 1))

=
1

2

[
∂2C

∂V 2
− δ(H1)∂

2H1

∂V 2
− δ(H2)∂

2H2

∂V 2

]2 (
σv
√
V
)4

(∆t)2 . (5.25)

This value should be close to 0 for near-to at-the-money options, since the vega of an option

is only sensitive to the change in the volatility for deep in-the-money and out-of-the-money

options.

5.2.4 Simulations of Hedging Methods in the Heston Model

We now turn our attention to the simulation of the delta, delta-sigma and the delta-sigma-

gamma hedging methods. In simulating the hedging schemes, we use Euler Monte Carlo

methods to produce the stock paths and the FFT pricing scheme to produce option prices.

Our original option, which we are attempting to hedge effectively, is a vanilla at-the-money

call with three months to expiry. The other two options used in the delta-sigma and delta-

sigma-gamma schemes are also at-the-money vanilla calls with six months and one year to

maturity respectively.

The parameters that we select to generate our stock price sample paths are:

µ = 0.08

r = 0.05

κ = 1

θ = 0.0382

σv = 0.2

ρ = − 0.3

V0 = 0.04.

We also set ϕt, our market price of volatility risk, to 0. This essentially means that no

volatility risk premium is demanded by investors. Such a choice of ϕt is justified in Kurpiel

and Roncalli [38]. Consequently, we have that θ(ϕ) = 0.04 under P(ϕ).
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The simulation of these three hedging strategies requires us to calculate certain option

price sensitivities — or “Greeks” — numerically. Specifically, we need to calculate option

price deltas, vegas and gammas, where the option delta and vega are the sensitivity of the

option price to stock price and volatility changes respectively. The gamma for an option is

the second order sensitivity of the option price to stock price changes — or the sensitivity

of the option delta to stock price changes. We simulate values for these at each time point

by making use of finite difference coefficients. Thus, for an arbitrary vanilla call (denoted

by C (St, Vt, T,K)), we calculate values for the “Greeks” ∆, V and Γ at time t as follows:

∆ =
C (St + ∆St, Vt, T,K)− C (St, Vt, T,K)

∆St

V =
C (St, Vt + ∆Vt, T,K)− C (St, Vt, T,K)

∆Vt

Γ =
C (St + ∆St, Vt, T,K)− 2C (St, Vt, T,K) + C (St −∆St, Vt, T,K)

(∆St)
2 .

Figure 5.1 The plot gives the distribution of absolute gains (on the positive part
of the horizontal axis) and losses (on the negative part of the horizontal axis) from
the delta hedging scheme. Euler Monte Carlo methods, with 10 000 stock paths,
were used to produce this plot.

Figure 5.1 displays the performance of the delta hedging scheme in the Heston model.

As can be seen from the plot, the performance of the scheme improves as the frequency of

portfolio rebalancing increases. In spite of this, however, the scheme quite inadequate in

hedging the volatility risk implicit in the vanilla call. This is to be expected as delta hedging



5.2 Hedging Strategies for the Heston Model 103

methods only offset the risk resulting from the randomness in the stock price process. If

we want to improve our hedging schemes in a stochastic volatility environment, we need to

include traded assets in our hedging portfolio that will eliminate the volatility risk in the

model.

Figure 5.2 The plot gives the distribution of absolute gains (on the positive part
of the horizontal axis) and losses (on the negative part of the horizontal axis) from
the delta-sigma hedging scheme. Euler Monte Carlo methods, with 10 000 stock
paths, were used to produce this plot.

Consequently, we turn our attention to the delta-sigma hedging scheme, the performance

of which is shown in Figure 5.2. This entails introducing a market traded option into the

hedging portfolio. Immediately, we can see that our hedging performance has markedly

improved. Even when rebalancing at monthly intervals the losses and gains on our hedging

scheme are all bounded between -3 and 3 for the simulation parameters used. Including the

second option, written on the same underlying, in the portfolio allows us to offset the risk

arising from the random component in the volatility process. Our hedging performance has

improved to the extent that our only hedging error arises from being forced to rebalance

the portfolio at discrete points in time.

Introducing a third option into our portfolio provides us with a delta, vega and gamma

hedge for the option. The gamma hedging component of this scheme greatly reduces the

hedging errors in the method that arise from discrete portfolio rebalancing. Figure 5.3 shows

the success of this scheme in improving our hedging performance. Using this method, and
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Figure 5.3 The plot gives the distribution of absolute gains (on the positive part
of the horizontal axis) and losses (on the negative part of the horizontal axis) from
the delta-sigma-gamma hedging scheme. Euler Monte Carlo methods, with 10 000
stock paths, were used to produce this plot.

Figure 5.4 In this plot, we compare the three hedging schemes (with daily portfo-
lio rebalancing) for the Heston model. The plot gives the distribution of absolute
gains (on the positive part of the horizontal axis) and losses (on the negative part of
the horizontal axis) from the three hedging schemes. Euler Monte Carlo methods,
with 10 000 stock paths, were used to produce this plot.
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rebalancing our portfolio at daily intervals essentially allows us to limit our hedging errors

to between -0.5 and 0.5.

Comparing the different hedging schemes under daily rebalancing, we can see the extent to

which the delta-sigma-gamma method outperforms the others. By treating vanilla options

as market traded assets and using them for the purpose of hedging the volatility risk in

the Heston model, as well as to reduce the discrete rebalancing error, we get a significantly

improved hedging methodology.

5.3 Hedging Strategies for the Bates and SVJJ Models

A natural extension of the previous section is to consider the hedging of options priced under

the Bates and SVJJ models. Thus, we now turn our attention to analysing the effectiveness

of the delta-sigma-gamma hedging scheme when jump processes are introduced to the stock

price and variance processes. We expect the performance of this scheme to worsen with

the introduction of jumps, since there are no assets in the replicating portfolio to hedge

the jump risk. Unlike in the previous sections on hedging under Heston dynamics, we do

not introduce the theory for risk-neutral transformations under the dynamics of stochastic

volatility jump-diffusion models here. Rather, we briefly consider this topic in Appendix D

and ask the interested reader to refer there for this purpose.

5.3.1 Hedging Simulations for the Bates and SVJJ Models

For simplicity, we set the market price of volatility risk to zero and assume no compensation

for jump risk. This means that we assume the same parameters for the jump components

in the two models under both the risk-neutral and the real-world measures. We also set

µ = r. This gives us the simplest possible specification for simulating hedging strategies

under the two models. The other parameters for the models are as follows:

Bates Model Parameters: SVJJ Model Parameters:
κ = 1 κ = 3.5
θ = 0.04 θ = 0.008
σv = 0.2 σv = 0.2
ρ = 0 ρ = 0
V0 = 0.04 V0 = 0.008
λJ = 1.5 λJ = 1.5
µJ = 0 µS = −0.04
σS = 0.15 σS = 0.0001

µV = 0
ρJ = 0.04
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Figure 5.5 Comparison of the three hedging schemes (with daily portfolio re-
balancing) for the Bates model. The plot gives the distribution of absolute gains
(on the positive part of the horizontal axis) and losses (on the negative part of
the horizontal axis) from the three hedging schemes. Euler Monte Carlo methods,
with 5000 stock paths, were used to produce this plot.

Figure 5.6 Comparison of the three hedging schemes (with daily portfolio re-
balancing) for the SVJJ model. The plot gives the distribution of absolute gains
(on the positive part of the horizontal axis) and losses (on the negative part of
the horizontal axis) from the three hedging schemes. Euler Monte Carlo methods,
with 5000 stock paths, were used to produce this plot.
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We can see from Figures 5.5 and 5.6 that the hedging schemes under-perform in these two

models, relative to their performance in the Heston model (see Figure 5.4). This is due to

the inclusion of jumps in the stock price and volatility processes of the models. Even under

the delta-sigma-gamma hedging scheme, there are no assets in the replicating portfolio to

eliminate the jump risk. In fact, we would need an infinite number of hedging instruments

in the replicating portfolio to fully offset the jump risk. The magnitudes of the parameters

for the jump processes obviously have a direct influence on the hedging performance in the

models. The larger the sizes of the jumps and the more frequently they occur, the worse

these methods will perform.

5.3.2 A Comment on Hedging Strategies when Jumps are Involved

In the Black-Scholes-Merton world, a dynamic delta hedging scheme is sufficient to perfectly

hedge a vanilla option contract. Moving into a stochastic volatility environment, as in the

Heston model, we find ourselves facing two sources of risk. The first of these is the same

source of risk in the Black-Scholes model, that being the driving Brownian motion in the

stock price process. The second source of randomness comes from the driving Brownian

motion in the volatility process. A delta hedging scheme, as well as a vega hedging scheme

are now required to immunize an option portfolio against random stock price and volatility

movements. This adds some complexity to our hedging scheme, but an almost perfect hedge

against random fluctuations is nonetheless possible by adding a liquidly traded option based

on the same underlying to our hedging portfolio. Moving to a world where jumps occur

in the price and/or the volatility of a stock, we are no longer able to perfectly hedge all

random fluctuations (not even in theory). Instead, we now have to attempt to minimise

our hedging error.

In the case where a finite number jumps occur in the stock price (and/or volatility) at

random times and having random jump sizes, we would need an infinite number of hedging

instruments to eliminate the jump risk completely. This is because we would need a different

hedging instrument for each possible jump size. Such a strategy would be impossible to

construct (Gatheral [25]). Instead, we can select a finite number of suitable jump amplitudes

to hedge against in an attempt to minimise our hedging error due to jumps. This can be

done in addition to a delta and vega hedging scheme to minimise our overall hedging loss.

He et al. [27] provide an insightful investigation into the hedging of jump diffusion models.

In their paper, they consider a jump-diffusion model without the stochastic volatility com-

ponent and show the hedging performance when various numbers of jump sizes are chosen
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to hedge against. They report that a hedging portfolio consisting of the underlying stock

(to enforce delta-neutrality), the risk free asset and ten appropriately chosen options yields

almost no hedging error. The number of hedging options that can be incorporated into the

hedging portfolio is largely governed by the number of liquidly tradable contracts available

in the market. Such a procedure could easily be extended to the hedging problem in the

Bates and SVJJ models.

In summary, we have seen that by including options as hedging instruments in our repli-

cation portfolio, we can hedge against the effects of stochastic volatility. The performance

of these schemes is also reasonable if we apply them to situations where jumps occur in the

model processes, as long as the jumps are fairly infrequent and are generally not very large.

To provide a better hedging portfolio for models that permit jumps, we need to consider

more hedging options to minimise the jump risk.



Chapter 6

Conclusion

The purpose of this dissertation has been to provide a consistent framework for approaching

the themes of pricing, calibration and hedging with respect to the Heston, Bates and SVJJ

models. From a South African perspective, we have written this report with the view of

better modelling and risk management of ALSI futures options in mind. In the first chapter,

we saw the parameter effects for the different models on the implied volatility surface and

the distribution of stock price returns. We also compared these to empirical observations of

the JSE Top 40 and S&P 500 indices. Notably, we observed that the presence of jumps in the

Bates and SVJJ models enables them to produce larger price movements than the Heston

model is able to produce. This means that the two jump models are also more capable of

producing stock price returns distributions with fat tails and which exhibit skewness. Such

characteristics agree with the price movements and returns distributions of the two indices.

Thereafter, we considered pricing methods for the models. Specifically, we examined the

application of the fast Fourier transform pricing method and Monte Carlo pricing methods

to the three models. The FFT method provides a fast and accurate means of pricing vanilla

options. The Monte Carlo methods, on the other hand, are much slower to implement.

Their strength arises, however, in their ability to provide pricing solutions for more complex

financial instruments, as well as their application to the simulation of hedging strategies.

The third chapter gave a comprehensive investigation into different calibration to option

price data techniques for the models as well as the application of these to actual market

calibration. It drew on the FFT pricing framework explored in the second chapter to devise

such schemes. We found here that a genetic algorithm routine, in conjunction with the

MATLAB lsqnonlin optimiser, provided the best means of fitting the models to syntheti-

cally generated data. These results were in comparison to those obtained by implementing
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calibration routines which made use of the adaptive simulated annealing framework as well

as the lsqnonlin optimiser on its own. Performing calibration in this way allowed us to

test the effectiveness of the different calibration techniques before considering calibration

to market data. The calibration of the three models to ALSI and S&P 500 options data

was performed by making use of the GA optimisation routine. We found that the ASLI

implied volatility skews were steep, but quite linear, and that the dynamics of the Heston

model matched these dynamics better than the other two models did. Calibration to the

S&P 500 options data, however, revealed that the jump models provide a better description

of market dynamics. More specifically, for the data analysed, the Bates model gave the

best fit to this data and gave the best performance in the calibration routine. The SVJJ

model seemed to be slightly over parameterised, making it more difficult to use. We thus

found that the Heston and Bates models were the most robust of the three and that the GA

calibration scheme provided the best means by which to fit the models to market data. An

important point to note is that we did not investigate the temporal stability of parameters

and recommend this as further research.

The final chapter of the dissertation examined hedging techniques for the models by

calculating option price sensitivities and constructing hedging portfolios which made use

of these. For the Heston model, a delta-sigma-gamma hedging scheme provided the best

performance. It eliminated all the return and volatility risk from the model. It also yielded

the best performance for discretely rebalanced portfolios. Furthermore, the application of

this method to the jump models gave reasonable results. The lack of hedging instruments

for the jump risk in the models meant that the method was not as effective as it was for

the Heston model however. An examination of current literature revealed that constructing

perfect hedging schemes for options priced under the dynamics of jump models — with the

jump magnitudes being defined by some continuous distribution — is impossible. Instead,

hedging portfolios need to incorporate numerous traded vanilla options to minimise hedging

errors.

Further work can always be undertaken in studying these three models. Notably, the use

of such models for pricing exotic options and the implementation of the techniques explored

in this project on faster computing infrastructures would form very relevant research topics.

The work in this dissertation has, however, focused on the main topics in the study of

stochastic volatility and jump processes. We hope that this will provide practitioners with

a robust framework for implementing these models.



Appendix A

Risk-Neutral Dynamics for Jump

Diffusion Models

In this chapter, we supply an intuitive explanation for the form of the stock price process

for a jump-diffusion model under the risk-neutral measure.

The form of the stock price process of a jump diffusion model (specifically, the stock price

process of the Bates and the SVJJ models) is

dSt = µ̄Stdt+
√
VtStdW̃t + JStdÑt

under the risk-neutral measure, where µ̄ is the drift term, W̃ is a Brownian motion and Ñ

is a Poisson process (with intensity λ). Note that we omit the enumeration of the Brownian

motion (seen in the main part of the text) for the sake of brevity. Now, as is the usual case,

we wish for the discounted version of this process to be a martingale under the risk-neutral

measure. An application of Itô’s formula for general semimartingales yields

d
(
e−rtSt

)
= (−r + µ̄)

(
e−rtSt

)
dt+

√
Vt
(
e−rtSt

)
dW̃t + J

(
e−rtSt

)
dÑt.

= (−r + µ̄)
(
e−rtSt

)
dt+

√
Vt
(
e−rtSt

)
dW̃t + J

(
e−rtSt

)
d
(
Ñt − λt

)
+ λJ

(
e−rtSt

)
dt

= (−r + µ̄+ λJ)
(
e−rtSt

)
dt+

√
Vt
(
e−rtSt

)
dW̃t + J

(
e−rtSt

)
d
(
Ñt − λt

)
.

Now, from a purely heuristic point of view, this process is a martingale under the risk-neutral

measure if

Ẽ
[
d
(
e−rtSt

)]
= 0,

where Ẽ [·] denotes the expectation operator under the risk-neutral measure. It is a common

result that both the Brownian motion, W̃t, and the compensated Poisson process, Ñt − λt,
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are martingales, null at zero, under the risk-neutral measure (by Girsanov’s Theorem), and

so we require

0 = Ẽ [−r + µ̄+ λJ ]

= − r + µ̄+ λµJ ,

with

µJ = exp

{
µS +

σ2
S

2

}
− 1,

where µS and σ2
S are the distributional parameters for the log-normally distributed jump

sizes (more specifically, for the distribution of 1 + J). Consequently,

µ̄ = r − λµJ

and so,

dSt = (r − λµJ)Stdt+
√
VtStdW̃t + JStdÑt.

This is the result that we see for the stock-price processes of both the Bates and SVJJ

models.



Appendix B

Model Characteristic Functions

B.1 The Heston Characteristic Function

We follow the works of Gatheral [25] and Zhu [59] in our treatment of the Heston charac-

teristic function. As we have seen before, the log-stock price and volatility processes of the

Heston model can be expressed as,

d logSt = rdt− 1

2
Vtdt+

√
Vt

[
ρdZ̃

(2)
t +

√
1− ρ2dZ̃

(1)
t

]
dVt = κ (θ − Vt) dt+ σv

√
VtdZ̃

(2)
t .

The characteristic function for the log-stock price is then given by,

φlog(ST )(u) = Ẽ [exp {iu log (ST )}]

= Ẽ
[
exp

{
iu

(
log (S0) + rT − 1

2

∫ T

0
Vtdt+ ρ

∫ T

0

√
VtdZ̃

(2)
t

+
√

1− ρ2

∫ T

0

√
VtdZ̃

(1)
t

)}]
= exp {iu (log (S0) + rT )} Ẽ

[
exp

{
− iu

2

∫ T

0
Vtdt

+ iuρ

∫ T

0

√
VtdZ̃

(2)
t +

(iu)2

2

(
1− ρ2

) ∫ T

0
Vtdt

}]
.

Now, integrating dVt, we get

VT = V0 + κθT − κ
∫ T

0
Vtdt+ σv

∫ T

0

√
VtdZ̃

(2)
t ,

and so, ∫ T

0

√
VtdZ̃

(2)
t =

1

σv

[
VT − V0 − κθT + κ

∫ T

0
Vtdt

]
.
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Inserting this into our expression for the characteristic function, we get

φlog(ST )(u) = exp {iu (log (S0) + rT )} Ẽ
[
exp

{
− iu

2

∫ T

0
Vtdt

+
iuρ

σv

[
VT − V0 − κθT + κ

∫ T

0
Vtdt

]
+

(iu)2

2

(
1− ρ2

) ∫ T

0
Vtdt

}]
= exp {iu (log (S0) + rT )− s2 (V0 + κθT )}

× Ẽ
[
exp

{
−s1

∫ T

0
Vtdt+ s2VT

}]
,

where

s1 = − iu
(
ρκ

σv
− 1

2
+
iu

2

(
1− ρ2

))
s2 =

iuρ

σv
.

Through an application of the Feynman-Kac Theorem, Zhu [59] shows that

Ẽ
[
exp

{
−s1

∫ T

0
Vtdt+ s2VT

}]
= exp

{
H

(1)
T (u)V0 +H

(2)
T (u)

}
,

so that

φlog(ST )(u) = exp
{
iu (log (S0) + rT )− s2 (V0 + κθT ) +H

(1)
T (u)V0 +H

(2)
T (u)

}
,

where

H
(1)
T (u) =

s2d
(
1 + e−dT

)
−
(
1− e−dT

) (
− iuρκ

σv
+ iu− (iu)2 (1− ρ2

))
(1− ge−dT ) (β + d)

H
(2)
T (u) =

2κθ

σ2
v

log

(
2d

(1− ge−dT ) (β + d)
e

1
2

(κ−d)T

)
g =

rneg

rpos

rpos/neg =
β ± d

2γ

d =
√
β2 − 4αγ

α =

(
−u2 − iu

)
2

β = κ− ρσviu

γ =
σ2
v

2
.
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Now, it is fairly simple to show that(
H

(1)
T (u)− s2

)
V0 = rneg

[
1− e−dT

1− ge−dT

]
V0 =: D (u, T )V0

H
(2)
T (u)− s2κθT = κθ

[
rnegT −

2

σ2
v

log

(
1− ge−dT

1− g

)]
=: C (u, T ) θ,

which leads us to the commonly used form of the Heston characteristic function:

φlog(ST )(u) = exp {C (u, T ) θ +D (u, T )V0 + iu (log (S0) + rT )} . (B.1)

B.2 The Bates Characteristic Function

Drawing from Zhu [59], we derive the characteristic function for the log-stock price in

the Bates model. The log-stock price and volatility processes of the Bates model can be

expressed as,

d logSt = rdt− λµJdt−
1

2
Vtdt+

√
Vt

[
ρdZ̃

(2)
t +

√
1− ρ2dZ̃

(1)
t

]
+ log (1 + J) dNt

dVt = κ (θ − Vt) dt+ σv
√
VtdZ̃

(2)
t ,

where log (1 + J) has a Normal
(

log (1 + µJ)− σ2
S
2 , σ

2
S

)
distribution. Now, the characteristic

function of the log-stock price is given by

φlog(ST )(u) = Ẽ [exp {iu log (ST )}]

= Ẽ
[
exp

{
iu

(
log (S0) + rT − λµJT −

1

2

∫ T

0
Vtdt+ ρ

∫ T

0

√
VtdZ̃

(2)
t

+
√

1− ρ2

∫ T

0

√
VtdZ̃

(1)
t + log (1 + J)

∫ T

0
dNt

)}]
= exp {iu (log (S0) + rT )} Ẽ

[
exp

{
− iu

2

∫ T

0
Vtdt

+ iuρ

∫ T

0

√
VtdZ̃

(2)
t +

(iu)2

2

(
1− ρ2

) ∫ T

0
Vtdt

}
× exp

{
−iuλµJT + λT

(
eiu log(1+J) − 1

)}]
= φ

(H)
log(ST )(u)× Ẽ

[
exp

{
−iuλµJT + λT

(
eiu log(1+J) − 1

)}]
,

where φ
(H)
log(ST )(u) is the Heston characteristic function given by (B.1). Now,

Ẽ
[
exp

{
λT
(
eiu log(1+J) − 1

)}]
= exp

{
λT
(
eiu log(1+µJ )− 1

2
iuσ2

S+ 1
2

(iu)2σ2
S − 1

)}
= exp

{
λT
(

(1 + µJ)iu eσ
2
S
iu
2

(iu−1) − 1
)}
.
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Thus,

φlog(ST )(u) = φ
(H)
log(ST )(u)× exp

{
−iuλµJT + λT

(
(1 + µJ)iu eσ

2
S
iu
2

(iu−1) − 1
)}

=: φ
(H)
log(ST )(u)× exp {P (u)λT}. (B.2)

B.3 The SVJJ Characteristic Function

The characteristic function of the log-stock price in the SVJJ model can be evaluated in a

similar way. Again, it is formed by multiplying the characteristic function of the log-stock

price in the Heston model with the characteristic function of the jump processes in the

log-stock price and volatility processes. Works by Duffie et. al. [22], Gatheral [25] and Zhu

[59] give the derivation of this characteristic function.



Appendix C

ASAMIN Installation Instructions

The following instructions are adapted from those given by Moins [44]. The installation

procedure for Windows is as follows:

1. Ensure that there is a C compiler installed on the PC that will be implementing the

ASA routine.

2. Download the ASA packages from http://www.ingber.com/#ASA.

3. Download the ASAMIN packages from http://ssakata.sdf.org/software/ and place

them in their own directory.

4. Place the ASA files asa.c, asa.h and asa user.h in the same directory in which the

ASAMIN packages were placed.

5. Open the MATLAB console and change the “current folder” to the directory contain-

ing the ASAMIN and relevant ASA files.

6. In the MATLAB command window, type:

mex asamin.c asa.c -DUSER_ACCEPTANCE_TEST#TRUE -DUSER_ASA_OUT#TRUE

-DDBL_MIN#2.2250738585072014e-308.

MATLAB will then create a MEX file, allowing the user to interface with the C-

language ASA code via MATLAB.

Importantly, the pathname for the directory containing the ASAMIN, relevant ASA and

MEX files must be incorporated into every script that calls the asamin function. This can

be done through the use of the addpath command in MATLAB.
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Appendix D

Measure Changes for Jump

Diffusion Models

In this chapter, we introduce the theory for measure changes for processes comprising a

compound Poisson process and a Brownian motion. Later, we apply this theory to the

cases of the Bates and the SVJJ models. We make a special note here that much of the

content in this section is an adaption of the works by Broadie et al. [10] and Shreve [53].

D.1 A Change of Measure for a Compound Poisson Process

as well as a Brownian Motion

The stock price and volatility processes in the Bates and SVJJ models are comprised of some

combination of a drift process, a diffusion process (in terms of a Brownian motion) and a

jump process (in terms of a compound Poisson process). A change of measure under these

models, to an equivalent martingale measure, must therefore be constructed by changing

the measure for both the Brownian motion and the Poisson process. We start by defining

a compound Poisson process.

Definition 6 (Compound Poisson Process). Let Nt be a Poisson process with jump inten-

sity λ, defined on a probability space (Ω,Ft,F ,P), where P is the real-world measure on that

space, Ft is our filtration process, t ∈ [0, T ] and T > 0. Suppose that X1, X2, . . . is a series

of independently and identically distributed random variables that are also independent of

Nt. A compound Poisson process is then defined by:

Yt =

Nt∑
i=1

Xi,

where the Xi represent the magnitudes of the jumps in the compound Poisson process.
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Now, considering the definition above, suppose that the Xi have a common density g (x).

The Radon-Nikodým derivative process

ζt = e(λ−λ̃)t
Nt∏
i=1

λ̃g̃ (Xi)

λg (Xi)

facilitates a change of measure from P to the risk-neutral measure P̃, where now, Ỹt is a

P̃-compound Poisson process with intensity λ̃ and jump size distribution g̃ (x). It is possible

to show that ζt is a martingale and, more specifically, that E [ζT ] = 1 for all values of t > 0

(see Shreve [53]). Consequently, we have that

P̃ (A) =

∫
A
ζTdP for all A ∈ F .

This completes the measure change for the compound Poisson process. Importantly, we

have seen that a measure change for a compound Poisson processes changes the jump

intensity and the jump distribution of the process. We now define a Brownian motion on

the same probability space and consider the change of measure for both the compound

Poisson process and the Brownian motion.

Consider the same probability space as before, upon which is defined a Brownian motion,

Zt, and a compound Poisson process, Yt. We assume that the two processes are independent

and both adapted to the filtration Ft. Furthermore, take λ̃ and λ to be positive numbers,

let g̃ (x) be a density function that agrees with g (x) in assigning zero probability to certain

intervals and define Θt to be an adapted process. Define

ξ
(1)
t = exp

{
−
∫ t

0
ΘvdWv −

1

2

∫ t

0
(Θv)

2 dv

}
ξ

(2)
t = e(λ−λ̃)t

Nt∏
i=1

λ̃g̃ (Xi)

λg (Xi)

ξt = ξ
(1)
t ξ

(2)
t . (D.1)

Again, we can show that ξt is a martingale and that E [ξT ] = 1 (see Shreve [53]). Now,

ξt is the Radon-Nikodým derivative process that allows us to change measures from the

real-world measure to the risk-neutral measure since

P̃ (A) =

∫
A
ξTdP for all A ∈ F .

This leads us to assert the following:

Definition 7 (Measure Change for a Compound Poisson Process and a Brownian Motion).

Under the measure P̃, Ỹt is a compound Poisson process with jump intensity λ̃ and i.i.d.
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jump sizes according to the risk-neutral distribution g̃(x). Furthermore, W̃t is a P̃-Brownian

motion such that

dW̃t = dWt + Θtdt,

with Ỹt and W̃t independent.

This now gives us the basic structure for performing measure changes for jump-diffusion

models. The framework above is easily extended to the multidimensional case, allowing us

to perform measure changes in the Bates and SVJJ models.

D.2 A Change of Measure in the Bates Model

Under the real-world probability measure, P, we can define the following dynamics for the

Bates model:

dSt = µStdt+
√
VtStdZ

(1)
t + Std (Qt − λµJ t)

dVt = κ (θ − Vt) dt+ σv
√
Vt

[
ρdZ

(1)
t +

√
1− ρ2dZ

(2)
t

]
,

where Z
(1)
t and Z

(2)
t are independent Brownian motions, Qt is a compound Poisson process

with jump intensity λ and jump sizes specified by a log-normal
(
µS , σ

2
S

)
distribution and

µJ = exp

{
µS +

σ2
S

2

}
− 1.

The Radon-Nikodým derivative process is given by:

ξt = ξ
(1)
t ξ

(2)
t ,

where,

ξ
(1)
t = exp

{
−1

2

∫ t

0

[(
Θ(1)
u

)2
+
(

Θ(2)
u

)2
]
du−

∫ t

0
Θ(1)
u dZ(1)

u −
∫ t

0
Θ(2)
u dZ(2)

u

}
ξ

(2)
t = e(λ−λ̃)t

Nt∏
i=1

λ̃g̃ (Xi)

λg (Xi)
,

such that

dZ̃
(1)
t = dZ

(1)
t + Θ

(1)
t dt

dZ̃
(2)
t = dZ

(2)
t + Θ

(2)
t dt.

Now, λ and λ̃ are the jump intensities of the compound Poisson process under P and P̃
respectively. Moreover, g (x) and g̃ (x) specify log-normal jump-size distributions under P
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and P̃ respectively. As in the Heston model, Θ
(1)
t and Θ

(2)
t are the market prices of return

and volatility risk. As usual, ξt allows us to change measure from the real-world measure

to the risk-neutral measure. Defining

Θ
(1)
t =

µ− r −
(
λµJ − λ̃µ̃J

)
√
Vt

Θ
(2)
t = γt

allows us to change the parameters of the Bates model processes in order to specify the

model under the risk-neutral measure. Thus, under P̃,

dSt = rStdt+
√
VtStdZ̃

(1)
t + Std

(
Q̃t − λ̃µ̃J t

)
dVt = κ

(
θ̃ − Vt

)
dt+ σv

√
Vt

[
ρdZ̃

(1)
t +

√
1− ρ2dZ̃

(2)
t

]
,

where Z̃
(1)
t and Z̃

(2)
t are independent P̃-Brownian motions, Q̃t is a P̃-compound Poisson

process with intensity λ̃ and log-normal
(
µ̃S , σ̃

2
S

)
distributed jumps and

µ̃J = exp

{
µ̃S +

σ̃2
S

2

}
− 1.

As was the case in the Heston model,

θ̃ = θ − σv
√
VtρΘ

(1)
t

κ
− σv

√
Vt
√

1− ρ2Θ
(2)
t

κ
.

Note, again, that this transformation is not unique. As in the Heston model, there are

multiple martingale measures equivalent to P.

D.3 A Change of Measure in the SVJJ Model

The change of measure in the SVJJ model is almost identical to that in the Bates model.

Specifying the SVJJ processes under the real-world measure P, we have:

dSt = µStdt+
√
VtStdZ

(1)
t + Std

(
Q

(s)
t − λµJ t

)
dVt = κ (θ − Vt) dt+ σv

√
Vt

[
ρdZ

(1)
t +

√
1− ρ2dZ

(2)
t

]
+ dQ

(v)
t ,

where Q
(s)
t and Q

(v)
t are two compound Poisson processes and

µJ =
exp

{
µS +

σ2
S
2

}
1− ρJµV

− 1.
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If we define Nt to be a Poisson process with intensity λ, then

Q
(s)
t =

Nt∑
i=1

Ji

Q
(v)
t =

Nt∑
i=1

Xi,

where Xi has an Exponential (µV ) distribution and Ji has a log-normal
(
µS + ρJXi, σ

2
S

)
distribution. Again, the Radon-Nikodým derivative process is given by:

ξt = ξ
(1)
t ξ

(2)
t ,

where ξ
(1)
t is the same as that in the Bates model and Broadie et al. [10] show that

ξ
(2)
t =

Nt∏
i=1

λ̃π̃ (Wi)

λπ (Wi)
e(
∫
W λπ(W )−λ̃π̃(W )dW)t,

where π (W ) and π̃ (W ) represent the joint distribution of the jump magnitudes in the two

compound Poisson processes in the model, under P and P̃ respectively. Finally, under P̃,

dSt = rStdt+
√
VtStdZ̃

(1)
t + Std

(
Q̃

(s)
t − λ̃µ̃J t

)
dVt = κ

(
θ̃ − Vt

)
dt+ σv

√
Vt

[
ρdZ̃

(1)
t +

√
1− ρ2dZ̃

(2)
t

]
+ dQ̃

(v)
t ,

where θ̃ is defined as before. Furthermore, Q̃
(s)
t has a log-normal

(
µ̃S + ρ̃JXt, σ̃

2
S

)
distribu-

tion and Q̃
(v)
t has an Exponential (µ̃V ) distribution under the risk-neutral measure and we

define

µ̃J =
exp

{
µ̃S +

σ̃2
S
2

}
1− ρ̃J µ̃V

− 1.

Again, this transformation is not unique.



Appendix E

Selected MATLAB Code

E.1 Monte-Carlo Methods

Euler-Maruyama Monte Carlo for the Heston Model

The following MATLAB code is a routine for pricing vanilla European call options under the

dynamics of the Heston model via the Euler-Maruyama Monte Carlo method. The inputs

for the function HestonEuler are the Heston model parameters (KAPPA, THETA, SIGMAv,

RHO, V0) as well as the risk-free rate of interest (r), the maturity of the option (T), the value

of the underlying at the inception of the option (S0), the strike price of the option (K), as

well as the number of simulation paths (PATHS) and time-steps (n) to be used in estimating

the option price. The function then outputs an option price (Price) and the simulation

time of the routine (Time).

function [Price, Time] = HestonEuler(KAPPA,THETA,SIGMAv,RHO,V0,r,T,S0,K,...

PATHS,n)

Timer = clock; %Start the algorithm timer

dt = T/n; %Interval length

V = V0*ones(PATHS,1); %Initialise variance vector

S = S0*ones(PATHS,1); %Initialise price vector

for i = 2:n+1;

Zv = randn(PATHS,1);

Zs = RHO*Zv+sqrt(1-RHO^2).*randn(PATHS,1);

S = S.*exp(r*dt-0.5*max(V,0)*dt+sqrt(max(V,0)).*Zs*sqrt(dt));
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V = V+KAPPA.*(THETA-V).*dt+SIGMAv.*sqrt(max(V,0)).*Zv*sqrt(dt);

end

Price = mean(max(S-K,0)*exp(-r*T)); %Call option price

Time = etime(clock,Timer); %Stop the algorithm timer

Euler-Maruyama Monte Carlo for the Bates Model

The following MATLAB code is a routine for pricing vanilla European call options under

the dynamics of the Bates model via the Euler-Maruyama Monte Carlo method. The inputs

for the function BatesEuler are the Bates model parameters (KAPPA, THETA, SIGMAv, RHO,

V0, MUJ, SIGMAS, LAMBDA) as well as the risk-free rate of interest (r), the maturity of the

option (T), the value of the underlying at the inception of the option (S0), the strike price

of the option (K), as well as the number of simulation paths (PATHS) and time-steps (n) to

be used in estimating the option price. The function then outputs an option price (Price)

and the simulation time of the routine (Time).

function [Price, Time] = BatesEuler(KAPPA,THETA,SIGMAv,RHO,V0,MUJ,...

SIGMAS,LAMBDA,r,T,S0,K,PATHS,n)

Timer = clock; %Start the algorithm timer

dt = T/n; %Interval length

V = V0*ones(PATHS,1); %Initialise variance vector

S = S0*ones(PATHS,1); %Initialise price vector

%Simulate the diffusion part of the stock price process:

for i = 2:n+1;

Zv = randn(PATHS,1);

Zs = RHO*Zv+sqrt(1-RHO^2).*randn(PATHS,1);

S = S + S*(r - LAMBDA*MUJ)*dt + S.*sqrt(max(V,0)).*Zs*sqrt(dt);

V = V+KAPPA.*(THETA-V).*dt+SIGMAv.*sqrt(max(V,0)).*Zv*sqrt(dt);

end

%Simulate the jump part of the stock price process:

PoissonRVs = poissrnd(LAMBDA*T,PATHS,1); %Randomly generate the

%number of jumps occurring along each simulated stock path

NT = zeros(PATHS,1); %Initialise cumulative jumpsize vector
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for j = 1:PATHS

NT(j) = prod(lognrnd(log(1+MUJ)-0.5*SIGMAS^2,SIGMAS,1,PoissonRVs(j)));

%Generate random jump sizes

end

S = S + S.*(NT-1); %Add jump and diffusion parts together

Price = mean(max(S-K,0)*exp(-r*T)); %Call option price

Time = etime(clock,Timer); %Stop the algorithm timer

Euler-Maruyama Monte Carlo for the SVJJ Model

The following MATLAB code is a routine for pricing vanilla European call options under

the dynamics of the SVJJ model via the Euler-Maruyama Monte Carlo method. The inputs

for the function SVJJEuler are the SVJJ model parameters (KAPPA, THETA, SIGMAv, RHO,

V0, LAMBDA, MUS, SIGMAS, MUV, RHOJ) as well as the risk-free rate of interest (r), the maturity

of the option (T), the value of the underlying at the inception of the option (S0), the strike

price of the option (K), as well as the number of simulation paths (PATHS) and time-steps

(n) to be used in estimating the option price. The function then outputs an option price

(Price) and the simulation time of the routine (Time).

function [Price, Time] = SVJJEuler(KAPPA,THETA,SIGMAv,RHO,V0,LAMBDA,MUS,...

SIGMAS,RHOJ,MUV,r,T,S0,K,PATHS,n)

Timer = clock; %Start the algorithm timer

MUJ = ( ( exp(MUS + 0.5*(SIGMAS^2)) ) / (1 - RHOJ*MUV) ) - 1;

V = V0*ones(PATHS,1); %Initialise variance vector

S = S0*ones(PATHS,1); %Initialise price vector

for i = 1:PATHS %Simulate along each path

%Simulate Poisson jumps:

JumpTimes = PoissonProcess(LAMBDA,T); %Jump times

Times = [JumpTimes T]; %Jump times and maturity

TimeDiffs = [Times(1) diff(Times)]; %Times between jumps

NumJumps = length(JumpTimes); %Number of jumps

JumpSizesV = [exprnd(MUV,1,NumJumps) 0]; %Jumps sizes in
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%volatility process

JumpSizesS = [lognrnd(MUS + RHOJ * JumpSizesV(1:end-1),SIGMAS) 1];

%Jumps sizes in stock price process

TimeSteps = ceil( (TimeDiffs/T) * n);

%Divide n (time steps) among jump times

dt = TimeDiffs ./ TimeSteps; %Time step length

% Demonstration:

% If T = 2, Times = [0.23 0.76 1.34 1.9 2], n = 100

% TimeSteps = [12 27 29 28 5]

% <__________________________________________>

% | | | | | |

% Times = 0 0.23 0.76 1.34 1.9 2

% TimeSteps = 12 27 30 28 6 sum = 103

%Separate jump and diffusion parts

for j = 1:NumJumps+1

for k = 1:TimeSteps(j) %Simulate diffusion part between jumps

Zv = randn;

Zs = RHO*Zv+sqrt(1-RHO^2).*randn;

S(i) = S(i) + S(i)*(r - LAMBDA*MUJ)*dt(j) + S(i).*...

sqrt(max(V(i),0)).*Zs*sqrt(dt(j));

V(i) = V(i)+KAPPA.*(THETA-V(i)).*dt(j) + SIGMAv.*....

sqrt(max(V(i),0)).*Zv*sqrt(dt(j));

end

S(i) = S(i) * JumpSizesS(j); %Include jump in stock price

V(i) = V(i) + JumpSizesV(j); %Include jump in variance

end

end

Price = mean(max(S-K,0)*exp(-r*T)); %Call option price

Time = etime(clock,Timer); %Stop the algorithm timer

function times = PoissonProcess(LAMBDA,t)

randt = exprnd(1/LAMBDA); %Generate exponential random variable

tTot = randt;
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count = 0;

times = []; %Jump times

while tTot <= t

count = count + 1;

times(count) = tTot; %Jump times

randt = exprnd(1/LAMBDA); %Generate exponential random variable

tTot = tTot + randt;

end

Exact Simulation Monte Carlo for the Heston Model

The following MATLAB code is a routine for pricing vanilla European call options under the

dynamics of the Heston model via the exact simulation scheme. The inputs for the function

HestonExactSimulation are the Heston model parameters (KAPPA, THETA, SIGMAv, RHO,

V0) as well as the risk-free rate of interest (r), the maturity of the option (T), the value of

the underlying at the inception of the option (S0), the strike price of the option (K), as well

as the number of simulation paths (PATHS) and time-steps (n) to be used in estimating the

option price. The function then outputs an option price (Price) and the simulation time

of the routine (Time).

function [Price Time] = HestonExactSimulation(KAPPA,THETA,SIGMAv,RHO,V0,...

r,T,S0,K,PATHS,n)

Timer = clock; %Start the algorithm timer

dt = T/n;

t = 0:dt:T;

N = 800;

h = 0.5;

%Stock price simulation:

Vold = V0*ones(PATHS,1); %Initialise variance vector

S = S0*ones(PATHS,1); %Initialise price vector

IVds = zeros(PATHS,1); %Initialise integral sample vector

ops = optimset(’TolX’,1e-6);

for col = 2:n+1

Vnew = NoncentralChiSquared(SIGMAv,KAPPA,THETA,t(col),t(col-1),Vold,...

PATHS); %Sample variance values from non-central chi-square distribution
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RandCDF = rand(PATHS,1);

for row = 1:PATHS

[IVds(row) fval exitflag output] = fzero(@(x)FourierInversion(h,...

Vold(row),Vnew(row),dt,SIGMAv,KAPPA,THETA,N,x) - ....

RandCDF(row),0.1,ops); %Sample values for integral of V_t

IVds = max(IVds,0);

end

IsqrtVdW = (1 / SIGMAv) * (Vnew - Vold - KAPPA * THETA * dt + ...

KAPPA * IVds); %Solve for values of integral of sqrt{V_t}

mu = log(S) + r * dt - 0.5 * IVds + RHO * IsqrtVdW;

sig = (1 - RHO^2) * IVds;

S = exp(mu + randn(PATHS,1) .* sqrt(sig)); %Generate stock prices from

%LogN(mu,sig) distribution

Vold = Vnew;

end

Price = mean(max(S-K,0))*exp(-r*T); %Call option price

Time = etime(clock,Timer); %Stop the algorithm timer

function X = NoncentralChiSquared(SIGMAv,KAPPA,THETA,t,s,Vs,n)

V = 4 * KAPPA * THETA / (SIGMAv^2);

D = ( 4 * KAPPA * exp(-KAPPA*(t-s)) * Vs ) / ( (SIGMAv^2) * ...

(1 - exp(-KAPPA*(t-s))) );

C = ( ( (SIGMAv^2) * (1 - exp(-KAPPA*(t-s))) ) / (4 * KAPPA) );

X = C * ncx2rnd(V,D,n,1);

function FIn = FourierInversion(h,Vs,Vt,dt,SIGMAv,KAPPA,THETA,N,x)

start = 0.01;

grid = h * (start:N);

integrand = ( sin(grid * x) ./ grid ) .* ...

real( CharFun(grid,Vs,Vt,dt,SIGMAv,KAPPA,THETA) );

FIn = (2 / pi) * trapz(grid,integrand);

function ChFn = CharFun(a,Vs,Vt,dt,SIGMAv,KAPPA,THETA)

d = 4 * THETA * KAPPA / (SIGMAv^2);

GAMMA =@(a) sqrt( (KAPPA^2) - 2 * (SIGMAv^2) * 1i * a );

A = ( GAMMA(a) .* exp( -0.5 * (GAMMA(a)-KAPPA) * (dt) ) * ...
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(1 - exp(-KAPPA*(dt))) ) ./ ( KAPPA * (1 - exp(-GAMMA(a) * (dt))) );

B1 = (Vs + Vt) / (SIGMAv^2);

B2 = KAPPA * ( 1 + exp(-KAPPA * (dt)) ) / ( 1 - exp(-KAPPA * (dt)) );

B3 = GAMMA(a) .* ( 1 + exp(-GAMMA(a) * (dt)) ) ./ ...

( 1 - exp(-GAMMA(a) * (dt)) );

nu = 0.5 * d - 1;

Z1 = sqrt(Vs .* Vt) * 4 .* GAMMA(a) .* exp(-0.5 * GAMMA(a) * (dt)) ...

./ ( (SIGMAv^2) * (1 - exp(-GAMMA(a) * (dt))) );

Z2 = sqrt(Vs .* Vt) * 4 * KAPPA * exp(-0.5 * KAPPA * (dt)) ...

/ ( (SIGMAv^2) * (1 - exp(-KAPPA * (dt))) );

C1 = besseli(nu,Z1);

C2 = besseli(nu,Z2);

ChFn = A .* exp(B1 .* (B2 - B3)) .* C1 ./ C2;

Exact Simulation Monte Carlo for the Bates and SVJJ Models. The exact simu-

lation schemes for the Bates and SVJJ models are simple extensions of that for the Heston

model. They can be constructed from the exact simulation scheme for the Heston model by

following the same framework laid out in the Euler-Maruyama methods for the Bates and

SVJJ models. We do not include the MATLAB code here for the sake of brevity.

E.2 Fast Fourier Transform Pricing Methods

FFT for the Heston Model

The following MATLAB routine computes the price of a European vanilla call option under

the dynamics of the Heston model by means of the fast Fourier transform method of Carr

and Madan [13]. The function, HestFFT takes the Heston model parameters (KAPPA, THETA,

SIGMAv, RHO, V0) as inputs, as well as the risk-free rate of return (r), the dividend yield on

the stock (q), the maturity of the option (T), the spot price of the underlying (S0) and the

strike price of the option (K). It outputs a single option price for the call option as well as

the strike price on the FFT strike grid that is closest to K. It is simple to extend the code

to output option prices for a range of strikes — a particular advantage of the FFT pricing

framework, especially for the purpose of model calibration.

function [hestfft strike] = HestonFFT(KAPPA,THETA,SIGMAv,RHO,V0,r,q,T,S0,K)

alpha = 0.75;

N = 2^12;



E.2 Fast Fourier Transform Pricing Methods 130

a = 600; %Upper limit of integration

eta = a/N; %Grid spacing for integration

lambda = (2*pi) / (N*eta); %Width of intervals between successive strikes

b = N*lambda / 2;

if S0 >= K %For ITM and ATM options

u = (0:(N-1)) * eta; %Integration grid

v = u - (alpha + 1) * 1i;

%Characteristic Function Variables:

ALPHA = -0.5*(v.^2 + 1i*v);

BETA = KAPPA - RHO*SIGMAv*1i*v;

GAMMA = (SIGMAv^2)/2;

d = sqrt(BETA.^2 - 4*ALPHA*GAMMA);

rpos = (BETA + d)/(SIGMAv^2);

rneg = (BETA - d)/(SIGMAv^2);

g = rneg./rpos;

D = rneg .* ((1 - exp(-d*T)) ./ (1 - g.*exp(-d*T)));

C = KAPPA * (rneg*T - (2/(SIGMAv^2)) * log((1 - g.*exp(-d*T)) ...

./ (1 - g)));

%Characteristic Function and Fourier Transform

CharFun = exp(C*THETA + D*V0 + 1i*v*(log(S0) + (r-q)*T));

FourierTrans = (exp(-r*T) * CharFun) ./ ((alpha + 1i*u) ...

.* (alpha + 1i*u + 1));

SWeightings = (1/3) * (3 + (-1).^(1:N) - [1 zeros(1,N-1)]);

%Include Simpson’s weightings

FFT = exp(1i*b*u) .* FourierTrans * eta .* SWeightings;

%FFT Routine

FFT = real(fft(FFT)); %Call MATLAB FFT routine

%Call Price Calculation

strikes = -b + lambda*(0:N-1); %Log-strike price grid

hestfft = (exp(-strikes*alpha)/pi) .* FFT; %Include dampening factor

position = (log(K) + b) / lambda + 1; %Strike position on grid
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hestfft = (1-(position-floor(position))) * hestfft(floor(position))...

+ (position-floor(position)) * hestfft(floor(position)+1);

%Interpolated FFT call price

elseif S0 < K %For OTM options

u = (0:(N-1)) * eta; %Integration grid

v1 = u - 1i*alpha;

v2 = u + 1i*alpha;

w1 = u - 1i*alpha - 1i;

w2 = u + 1i*alpha - 1i;

%Characteristic Function 1 Variables:

ALPHA1 = -0.5*(w1.^2 + 1i*w1);

BETA1 = KAPPA - RHO*SIGMAv*1i*w1;

GAMMA1 = (SIGMAv^2)/2;

d1 = sqrt(BETA1.^2 - 4*ALPHA1*GAMMA1);

rpos1 = (BETA1 + d1)/(SIGMAv^2);

rneg1 = (BETA1 - d1)/(SIGMAv^2);

g1 = rneg1./rpos1;

D1 = rneg1 .* ((1 - exp(-d1*T)) ./ (1 - g1.*exp(-d1*T)));

C1 = KAPPA * (rneg1*T - (2/(SIGMAv^2)) * log((1 - g1.*exp(-d1*T)) ...

./ (1 - g1)));

CharFun1 = exp(C1*THETA + D1*V0 + 1i*w1*(log(S0) + (r-q)*T));

%Characteristic Function 2 Variables:

ALPHA2 = -0.5*(w2.^2 + 1i*w2);

BETA2 = KAPPA - RHO*SIGMAv*1i*w2;

GAMMA2 = (SIGMAv^2)/2;

d2 = sqrt(BETA2.^2 - 4*ALPHA2*GAMMA2);

rpos2 = (BETA2 + d2)/(SIGMAv^2);

rneg2 = (BETA2 - d2)/(SIGMAv^2);

g2 = rneg2./rpos2;

D2 = rneg2 .* ((1 - exp(-d2*T)) ./ (1 - g2.*exp(-d2*T)));

C2 = KAPPA * (rneg2*T - (2/(SIGMAv^2)) * log((1 - g2.*exp(-d2*T)) ...

./ (1 - g2)));
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CharFun2 = exp(C2*THETA + D2*V0 + 1i*w2*(log(S0) + (r-q)*T));

%Characteristic Function and Fourier Transform

zeta1 = exp(-r*T) * ((1./(1 + 1i*v1)) - exp(r*T)./(1i*v1) ...

- CharFun1./(v1.^2 - 1i*v1));

zeta2 = exp(-r*T) * ((1./(1 + 1i*v2)) - exp(r*T)./(1i*v2) ...

- CharFun2./(v2.^2 - 1i*v2));

FourierTrans = (zeta1 - zeta2) / 2;

SWeightings = (1/3) * (3 + (-1).^(1:N) - [1 zeros(1,N-1)]);

%Include Simpson’s weightings

FFT = exp(1i*b*u) .* FourierTrans * eta .* SWeightings;

%FFT Routine

FFT = real(fft(FFT));

%Call Price Calculation

strikes = -b + lambda*(0:N-1); %Log-strike price grid

hestfft = (1 ./ (pi*sinh(alpha*strikes))) .* FFT;

%Include dampening factor

position = (log(K) + b) / lambda + 1; %Strike position on grid

hestfft = (1-(position-floor(position))) * hestfft(floor(position)) ...

+ (position-floor(position)) * hestfft(floor(position)+1);

%Interpolated FFT call price

end

strikes = -b + lambda*(0:N-1);

strike = exp(strikes(round(position))); %Strike price on strike grid

%closest to required strike

end

FFT for the Bates Model

The following MATLAB routine computes the price of a European vanilla call option under

the dynamics of the Bates model by means of the fast Fourier transform method of Carr

and Madan [13]. The function, BatesFFT takes the Bates model parameters (KAPPA, THETA,

SIGMAv, RHO, V0, MUJ, SIGMAS, LAMBDA) as inputs, as well as the risk-free rate of return (r),
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the dividend yield on the stock (q), the maturity of the option (T), the spot price of the

underlying (S0) and the strike price of the option (K). It outputs a single option price for

the call option as well as the strike price on the FFT strike grid that is closest to K. It is

simple to extend the code to output option prices for a range of strikes.

function [batesfft strike] = BatesFFT(KAPPA,THETA,SIGMAv,RHO,V0,LAMBDA,...

MUJ,SIGMAS,r,q,T,S0,K)

alpha = 0.75;

N = 2^12;

a = 600; %Upper limit of integration

eta = a/N; %Grid spacing for integration

lambda = (2*pi) / (N*eta); %Width of intervals between successive strikes

b = N*lambda / 2;

if S0 >= K %For ITM and ATM options

u = (0:(N-1)) * eta; %Integration grid

v = u - (alpha + 1) * 1i;

%Characteristic Function Variables:

ALPHA = -0.5*(v.^2 + 1i*v);

BETA = KAPPA - RHO*SIGMAv*1i*v;

GAMMA = (SIGMAv^2)/2;

d = sqrt(BETA.^2 - 4*ALPHA*GAMMA);

rpos = (BETA + d)/(SIGMAv^2);

rneg = (BETA - d)/(SIGMAv^2);

g = rneg./rpos;

D = rneg .* ((1 - exp(-d*T)) ./ (1 - g.*exp(-d*T)));

C = KAPPA * (rneg*T - (2/(SIGMAv^2)) * log((1 - g.*exp(-d*T))...

./ (1 - g)));

%Characteristic Function and Fourier Transform

CharFun = exp(C*THETA + D*V0 + 1i*v*(log(S0) + (r-q)*T));

%Diffusion characteristic function

JumpCFn = exp(-LAMBDA*MUJ*1i*v*T + LAMBDA*T * ((1 + MUJ).^(1i.*v)...

.* exp(SIGMAS^2*(1i.*v/2).*(1i.*v - 1)) - 1));
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%Jump characteristic function

FourierTrans = (exp(-r*T) * CharFun .* JumpCFn) ./ ((alpha + 1i*u)...

.* (alpha + 1i*u + 1));

SWeightings = (1/3) * (3 + (-1).^(1:N) - [1 zeros(1,N-1)]);

%Include Simpson’s weightings

FFT = exp(1i*b*u) .* FourierTrans * eta .* SWeightings;

%FFT Routine

FFT = real(fft(FFT)); %Call MATLAB FFT routine

%Call Price Calculation

strikes = -b + lambda*(0:N-1); %Log-strike price grid

batesfft = (exp(-strikes*alpha)/pi) .* FFT; %Include dampening factor

position = (log(K) + b) / lambda + 1; %Strike position on grid

batesfft = (1-(position-floor(position))) * ...

batesfft(floor(position)) + (position-floor(position)) ...

* batesfft(floor(position)+1);

%Interpolated FFT call price

elseif S0 < K %For OTM options

u = (0:(N-1)) * eta; %Integration grid

v1 = u - 1i*alpha;

v2 = u + 1i*alpha;

w1 = u - 1i*alpha - 1i;

w2 = u + 1i*alpha - 1i;

%Characteristic Function 1 Variables

ALPHA1 = -0.5*(w1.^2 + 1i*w1);

BETA1 = KAPPA - RHO*SIGMAv*1i*w1;

GAMMA1 = (SIGMAv^2)/2;

d1 = sqrt(BETA1.^2 - 4*ALPHA1*GAMMA1);

rpos1 = (BETA1 + d1)/(SIGMAv^2);

rneg1 = (BETA1 - d1)/(SIGMAv^2);

g1 = rneg1./rpos1;

D1 = rneg1 .* ((1 - exp(-d1*T)) ./ ...

(1 - g1.*exp(-d1*T)));
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C1 = KAPPA * (rneg1*T - (2/(SIGMAv^2)) * ...

log((1 - g1.*exp(-d1*T)) ./ (1 - g1)));

JumpCFn1 = exp(-LAMBDA*MUJ*1i*w1*T + LAMBDA*T * ((1 + MUJ).^(1i*w1)...

.* exp(SIGMAS^2*(1i.*w1/2).*(1i.*w1 - 1)) - 1));

%Jump characteristic function

CharFun1 = exp(C1*THETA + D1*V0 + 1i*w1*(log(S0) + (r-q)*T)) ...

.* JumpCFn1;

%Characteristic Function 2 Variables

ALPHA2 = -0.5*(w2.^2 + 1i*w2);

BETA2 = KAPPA - RHO*SIGMAv*1i*w2;

GAMMA2 = (SIGMAv^2)/2;

d2 = sqrt(BETA2.^2 - 4*ALPHA2*GAMMA2);

rpos2 = (BETA2 + d2)/(SIGMAv^2);

rneg2 = (BETA2 - d2)/(SIGMAv^2);

g2 = rneg2./rpos2;

D2 = rneg2 .* ((1 - exp(-d2*T)) ./ ...

(1 - g2.*exp(-d2*T)));

C2 = KAPPA * (rneg2*T - (2/(SIGMAv^2)) * ...

log((1 - g2.*exp(-d2*T)) ./ (1 - g2)));

JumpCFn2 = exp(-LAMBDA*MUJ*1i*w2*T + LAMBDA*T * ((1 + MUJ).^(1i*w2)...

.* exp(SIGMAS^2*(1i.*w2/2).*(1i.*w2 - 1)) - 1));

%Jump characteristic function

CharFun2 = exp(C2*THETA + D2*V0 + 1i*w2*(log(S0) + (r-q)*T)) ...

.* JumpCFn2;

%Characteristic Function and Fourier Transform

zeta1 = exp(-r*T) * ((1./(1 + 1i*v1)) - exp(r*T)./(1i*v1) ...

- CharFun1./(v1.^2 - 1i*v1));

zeta2 = exp(-r*T) * ((1./(1 + 1i*v2)) - exp(r*T)./(1i*v2) ...

- CharFun2./(v2.^2 - 1i*v2));

FourierTrans = (zeta1 - zeta2) / 2;

SWeightings = (1/3) * (3 + (-1).^(1:N) - [1 zeros(1,N-1)]);

%Include Simpson’s weightings

FFT = exp(1i*b*u) .* FourierTrans * eta .* SWeightings;
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%FFT Routine

FFT = real(fft(FFT)); %Call MATLAB FFT routine

%Call Price Calculation

strikes = -b + lambda*(0:N-1); %Log-strike price grid

batesfft = (1 ./ (pi*sinh(alpha*strikes))) .* FFT;

%Include dampening factor

position = (log(K) + b) / lambda + 1; %Strike position on grid

batesfft = (1-(position-floor(position))) * ...

batesfft(floor(position)) + (position-floor(position)) ...

* batesfft(floor(position)+1);

%Interpolated FFT call price

end

strikes = -b + lambda*(0:N-1);

strike = exp(strikes(round(position))); %Strike price on strike grid

%closest to required strike

FFT for the SVJJ Model

The following MATLAB routine computes the price of a European vanilla call option under

the dynamics of the SVJJ model by means of the fast Fourier transform method of Carr

and Madan [13]. The function, SVJJFFT takes the SVJJ model parameters (KAPPA, THETA,

SIGMAv, RHO, V0, LAMBDAJ, MUS, SIGMAS, MUV, RHOJ) as inputs, as well as the risk-free rate

of return (r), the dividend yield on the stock (q), the maturity of the option (T), the spot

price of the underlying (S0) and the strike price of the option (K). It outputs a single option

price for the call option as well as the strike price on the FFT strike grid that is closest to

K. It is simple to extend the code to output option prices for a range of strikes.

function [svjjfft strike] = SVJJFFT(KAPPA,THETA,SIGMAv,RHO,V0,LAMBDAJ,...

MUS,SIGMAS,RHOJ,MUV,r,q,T,S0,K)

alpha = 0.75;

N = 2^12;

a = 600; %Upper limit of integration

eta = a/N; %Grid spacing for integration

lambda = (2*pi) / (N*eta); %Width of intervals btw successive strikes
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b = N*lambda / 2;

if S0 >= K %For ITM and ATM options

u = (0:(N-1)) * eta; %Integration grid

v = u - (alpha + 1) * 1i;

%Characteristic Function Variables

%Diffusion Variables

ALPHA = -0.5*(v.^2 + 1i*v);

BETA = KAPPA - RHO*SIGMAv*1i*v;

GAMMA = (SIGMAv^2)/2;

d = sqrt(BETA.^2 - 4*ALPHA*GAMMA);

rpos = (BETA + d)/(SIGMAv^2);

rneg = (BETA - d)/(SIGMAv^2);

g = rneg./rpos;

D = rneg .* ((1 - exp(-d*T)) ./ (1 - g.*exp(-d*T)));

C = KAPPA * (rneg*T - (2/(SIGMAv^2)) * log((1 - g.*exp(-d*T)) ...

./ (1 - g)));

%Jump Variables

MUJ = exp(MUS + 0.5*SIGMAS^2) / (1 - RHOJ*MUV) - 1;

c = 1 - RHOJ*MUV*1i*v;

nu = ( (BETA + d) ./ ((BETA + d).*c - 2*MUV*ALPHA) ) * T + ...

( (4*MUV*ALPHA) ./ ((d.*c).^2 - (2*MUV*ALPHA - BETA.*c) ...

.^2) ) .* log( 1 - ( ((d-BETA).*c + 2*MUV*ALPHA) ./ ...

(2*d.*c) ).*(1 - exp(-d*T)) );

P = -T*(1 + MUJ*1i*v) + exp( MUS*1i*v + 0.5*(SIGMAS^2)*(1i*v).^2 ).*nu;

%Characteristic Function and Fourier Transform

CharFun = exp(C*THETA + D*V0 + P*LAMBDAJ + 1i*v*(log(S0) + (r-q)*T));

FourierTrans = (exp(-r*T) * CharFun) ./ ((alpha + 1i*u) ...

.* (alpha + 1i*u + 1));

SWeightings = (1/3) * (3 + (-1).^(1:N) - [1 zeros(1,N-1)]);

%Include Simpson’s weightings

FFT = exp(1i*b*u) .* FourierTrans * eta .* SWeightings;
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%FFT Routine

FFT = real(fft(FFT)); %Call MATLAB FFT routine

%Call Price Calculation

strikes = -b + lambda*(0:N-1); %Log-strike price grid

svjjfft = (exp(-strikes*alpha)/pi) .* FFT; %Include dampening factor

position = (log(K) + b) / lambda + 1; %Strike position on grid

svjjfft = (1-(position-floor(position))) * ...

svjjfft(floor(position)) + (position-floor(position)) ...

* svjjfft(floor(position)+1);

%Interpolated FFT call price

elseif S0 < K %For OTM options

u = (0:(N-1)) * eta; %Integration grid

v1 = u - 1i*alpha;

v2 = u + 1i*alpha;

w1 = u - 1i*alpha - 1i;

w2 = u + 1i*alpha - 1i;

%Characteristic Function 1 Variables

%Diffusion Variables

ALPHA1 = -0.5*(w1.^2 + 1i*w1);

BETA1 = KAPPA - RHO*SIGMAv*1i*w1;

GAMMA1 = (SIGMAv^2)/2;

d1 = sqrt(BETA1.^2 - 4*ALPHA1*GAMMA1);

rpos1 = (BETA1 + d1)/(SIGMAv^2);

rneg1 = (BETA1 - d1)/(SIGMAv^2);

g1 = rneg1./rpos1;

D1 = rneg1 .* ((1 - exp(-d1*T)) ./ (1 - g1.*exp(-d1*T)));

C1 = KAPPA * (rneg1*T - (2/(SIGMAv^2)) * log((1 - g1.*exp(-d1*T)) ...

./ (1 - g1)));

%Jump Variables

MUJ1 = exp(MUS + 0.5*SIGMAS^2) / (1 - RHOJ*MUV) - 1;

c1 = 1 - RHOJ*MUV*1i*w1;

nu1 = ( (BETA1 + d1) ./ ((BETA1 + d1).*c1 - 2*MUV*ALPHA1) ) * T + ...
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( (4*MUV*ALPHA1) ./ ((d1.*c1).^2 - (2*MUV*ALPHA1 - BETA1.*c1) ...

.^2) ) .* log( 1 - ( ((d1-BETA1).*c1 + 2*MUV*ALPHA1) ./ ...

(2*d1.*c1) ) .* (1 - exp(-d1*T)) );

P1 = -T*(1 + MUJ1*1i*w1) + exp( MUS*1i*w1 + ...

0.5*(SIGMAS^2)*(1i*w1).^2 ).*nu1;

CharFun1 = exp(C1*THETA + D1*V0 + P1*LAMBDAJ + ...

1i*w1*(log(S0) + (r-q)*T));

%Characteristic Function 2 Variables

ALPHA2 = -0.5*(w2.^2 + 1i*w2);

BETA2 = KAPPA - RHO*SIGMAv*1i*w2;

GAMMA2 = (SIGMAv^2)/2;

d2 = sqrt(BETA2.^2 - 4*ALPHA2*GAMMA2);

rpos2 = (BETA2 + d2)/(SIGMAv^2);

rneg2 = (BETA2 - d2)/(SIGMAv^2);

g2 = rneg2./rpos2;

D2 = rneg2 .* ((1 - exp(-d2*T)) ./ (1 - g2.*exp(-d2*T)));

C2 = KAPPA * (rneg2*T - (2/(SIGMAv^2)) * log((1 - g2.*exp(-d2*T)) ...

./ (1 - g2)));

%Jump Variables

MUJ2 = exp(MUS + 0.5*SIGMAS^2) / (1 - RHOJ*MUV) - 1;

c2 = 1 - RHOJ*MUV*1i*w2;

nu2 = ( (BETA2 + d2) ./ ((BETA2 + d2).*c2 - 2*MUV*ALPHA2) ) * T + ...

( (4*MUV*ALPHA2) ./ ((d2.*c2).^2 - (2*MUV*ALPHA2 - BETA2.*c2) ...

.^2) ) .* log( 1 - ( ((d2-BETA2).*c2 + 2*MUV*ALPHA2) ./ ...

(2*d2.*c2) ) .* (1 - exp(-d2*T)) );

P2 = -T*(1 + MUJ2*1i*w2) + exp( MUS*1i*w2 + ...

0.5*(SIGMAS^2)*(1i*w2).^2 ).*nu2;

CharFun2 = exp(C2*THETA + D2*V0 + P2*LAMBDAJ + ...

1i*w2*(log(S0) + (r-q)*T));

%Characteristic Function and Fourier Transform

zeta1 = exp(-r*T) * ((1./(1 + 1i*v1)) - exp(r*T)./(1i*v1) ...

- CharFun1./(v1.^2 - 1i*v1));
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zeta2 = exp(-r*T) * ((1./(1 + 1i*v2)) - exp(r*T)./(1i*v2) ...

- CharFun2./(v2.^2 - 1i*v2));

FourierTrans = (zeta1 - zeta2) / 2;

SWeightings = (1/3) * (3 + (-1).^(1:N) - [1 zeros(1,N-1)]);

%Include Simpson’s weightings

FFT = exp(1i*b*u) .* FourierTrans * eta .* SWeightings;

%FFT Routine

FFT = real(fft(FFT)); %Call MATLAB FFT routine

%Call Price Calculation

strikes = -b + lambda*(0:N-1); %Log-strike price grid

svjjfft = (1 ./ (pi*sinh(alpha*strikes))) .* FFT;

%Include dampening factor

position = (log(K) + b) / lambda + 1; %Strike position on grid

svjjfft = (1-(position-floor(position))) * ...

svjjfft(floor(position)) + (position-floor(position)) ...

* svjjfft(floor(position)+1);

%Interpolated FFT call price

end

strikes = -b + lambda*(0:N-1);

strike = exp(strikes(round(position))); %Strike price on strike grid

%closest to required strike

E.3 The Genetic Algorithm

The following is our implementation of the genetic algorithm. The routine requires the

input of an objective function to be optimised, the number of unknowns in the optimisation

problem, the parameter bounds for the objective function as well as a variable declaring

whether a minimisation or maximisation is being undertaken. It outputs the optimised

function parameters as well as the running time of the algorithm. It also produces statistics

pertaining to the fitness of individuals across generations.

function [Output Time MeanFitness SumFitness MaxFitness MinFitness] = ...

GeneticAlgorithm(ObjectiveFunction,NoOfUnknowns,...

UpperBounds,LowerBounds,minmax)
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Tstart = clock; %Start algorithm timer

% *** ALGORITHM INPUTS ***

% Objective Function - The function upon which the GA will act

% NoOfUnknowns - Number of model parameters

% UpperBounds - Upper bounds for the unknowns / model parameters

% LowerBounds - Lower bounds for the unknowns / model parameters

% minmax - Minimise of maximise the function. Set to ’MIN’ or ’MAX’.

% *** ALGORITHM SETTINGS ***

disp(’Configuring Settings.’)

PopSize = 1000; %Number of individuals in the population.

SubStrLength = 100; %Binary string length for each unknown.

TotStrLength = NoOfUnknowns * SubStrLength;

MaxNoOfGens = 100; %Maximum number of generations.

CrossOverProb = 0.9; %Probability associated with crossover.

MutationProb = (1 / TotStrLength) * 20; %Prob associated with mutation.

Elitism = ’on’; %Turn elitism ’on’ or ’off’.

TournSelectionProb = 0.75; %Prob of selecting fittest individual in

%tournament selection

CONST = 1000; %Set constant used to turn minimisation into maximisation.

% *** INITIAL POPULATION - GENERATION 1 ***

disp(’Creating Initial Population.’)

Population = round(rand(PopSize,TotStrLength)); %Population matrix as

%a bit string. There are as many rows as population size and cols

%as total string length.

IntPop = zeros(PopSize,NoOfUnknowns); %Integer values for

%population strings.

for bit = 1:NoOfUnknowns

IntPop(1:end,bit) = sum( Population(1:end,(bit-1)...

*SubStrLength+1:(bit)*SubStrLength)...

*2.^( ones(PopSize,1)*(SubStrLength-1:-1:0) ),2 );
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%Converts binary digits into integer values.

end

BoundDiffs = UpperBounds - LowerBounds;

%Difference between upper and lower bounds.

RealPop = ones(PopSize,1) * (BoundDiffs / (2^(SubStrLength) - 1))...

.* IntPop + ones(PopSize,1) * LowerBounds;

%Calculate the real value for each unknown.

% *** EVALUATE FITNESS OF INDIVIDUALS ***

disp(’Evaluating Initial Fitness.’)

Fitness = zeros(PopSize,1);

if strcmp(’MAX’,minmax) %Fitness function for each individual.

for individ = 1:PopSize

Fitness(individ) = max( ObjectiveFunction ...

(RealPop(individ,:)) , 0 );

end

elseif strcmp(’MIN’,minmax)

for individ = 1:PopSize

Fitness(individ) = max( CONST - ObjectiveFunction ...

(RealPop(individ,:)), 0);

end

else

disp(’minmax incorrectly specified.’)

end

MeanFitness = [mean(Fitness) zeros(1,MaxNoOfGens-1)];

%Average fitness of population.

MaxFitness = [max(Fitness) zeros(1,MaxNoOfGens-1)];

%Maximum fitness value.

MinFitness = [min(Fitness) zeros(1,MaxNoOfGens-1)];

%Minimum fitness value.

SumFitness = [sum(Fitness) zeros(1,MaxNoOfGens-1)];

%Total fitness of population.

% *** RUNNING TIMER ***
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disp(’*****************************’)

disp([’Generation ’,num2str(1)])

disp(’-------------------’)

disp([’Running Time: ’,num2str( etime(clock,Tstart) )])

disp([’Time Remaining: ’,...

num2str( (etime(clock,Tstart)) * (MaxNoOfGens-1) )])

disp(’*****************************’)

% *** GENETIC ALGORITHM ROUTINE ***

disp(’Running the Algorithm.’)

for gen = 2:MaxNoOfGens

NewPopulation = zeros(PopSize,TotStrLength);

NewNewPopulation = zeros(PopSize,TotStrLength);

% *** SELECTION ***

NoOfFittest = 0.2 * PopSize;

NoInTournament = 0.7 * PopSize;

NoNew = 0.1 * PopSize;

%Select Fittest Individuals

[OrderedFitness Index] = sort(Fitness,’descend’);

for fit = 1:NoOfFittest

NewPopulation(fit,:) = Population(Index(fit),:);

end

%Tournament Selection

TournIndividuals = 4;

for TournRound = 1:NoInTournament

TournRnd = floor(rand(1,TournIndividuals)*PopSize) + 1;

[OrdrderedFitness Index] = sort(Fitness(TournRnd),’descend’);

for fighter = 1:TournIndividuals

if rand <= TournSelectionProb
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Winner = fighter;

break

elseif fighter == TournIndividuals

Winner = fighter;

end

end

NewPopulation(TournRound+NoOfFittest,:) = ...

Population(TournRnd(Index(Winner)),:);

end

%New Individuals

NewPopulation(NoOfFittest+NoInTournament+1:end,1:end) = ...

round(rand(NoNew,TotStrLength));

RandNos = rand(1,PopSize);

[SortRandNos RandomArrangement] = sort(RandNos);

NewPopulation = NewPopulation(RandomArrangement,1:end);

% *** CROSSOVER ***

NoOfCrossovers = 5;

for individ = 1:PopSize/2

NewIndivid1 = NewPopulation(2*(individ-1) + 1,1:end);

NewIndivid2 = NewPopulation(2*individ,1:end);

if rand <= CrossOverProb %Crossover with given probability.

CrossSites = floor((TotStrLength - 1) * ...

rand(1,NoOfCrossovers)) + 1; %Select a point to crossover.

CrossSites = [0 sort(CrossSites) TotStrLength];

NewNewIndivid1 = [];

NewNewIndivid2 = [];

%Perform crossover

for cross = 2:length(CrossSites);

if mod(cross,2) == 0

A = NewIndivid1;

B = NewIndivid2;

else

A = NewIndivid2;
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B = NewIndivid1;

end

NewNewIndivid1 = [NewNewIndivid1 A(CrossSites(cross-1)...

+1:CrossSites(cross))];

NewNewIndivid2 = [NewNewIndivid2 B(CrossSites(cross-1)...

+1:CrossSites(cross))];

end

NewNewPopulation(2*(individ-1) + 1,1:end) = NewNewIndivid1;

%Create new population.

NewNewPopulation(2*individ,1:end) = NewNewIndivid2;

%Create new population.

else %No crossover.

NewNewPopulation(2*(individ-1) + 1,1:end) = NewIndivid1;

%Create new population.

NewNewPopulation(2*individ,1:end) = NewIndivid2;

%Create new population.

end

end

NewPopulation = NewNewPopulation;

% *** MUTATION ***

MutationMatrix = rand(PopSize,TotStrLength) <= MutationProb;

%Matrix displaying bits to be flipped.

NewPopulation = NewPopulation + MutationMatrix;

NewPopulation = (NewPopulation) .* (NewPopulation < 2);

%Mutated population.

% *** EVALUATE REAL VALUES OF NEW POPULATION ***

NewIntPop = zeros(PopSize,NoOfUnknowns);

%Integer values for population strings.

for bit = 1:NoOfUnknowns

NewIntPop(1:end,bit) = sum( NewPopulation(1:end,(bit-1)...

*SubStrLength+1:(bit)*SubStrLength)...

.*2.^( ones(PopSize,1)*(SubStrLength-1:-1:0) ),2 );
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%Converts binary digits into integer values.

end

NewRealPop = ones(PopSize,1) * (BoundDiffs ...

/ (2^(SubStrLength) - 1)) .* NewIntPop ...

+ ones(PopSize,1) * LowerBounds;

%Calculate the real value for each unknown.

% *** EVALUATE FITNESS OF NEW POPULATION ***

NewFitness = zeros(PopSize,1);

if strcmp(’MAX’,minmax) %Fitness function for each individual.

for individ = 1:PopSize

NewFitness(individ) = max( ObjectiveFunction...

(NewRealPop(individ,:)) , 0 );

end

elseif strcmp(’MIN’,minmax)

for individ = 1:PopSize

NewFitness(individ) = max( CONST - ...

ObjectiveFunction(NewRealPop(individ,:)), 0);

end

end

% *** ELITISM ***

if strcmp(Elitism,’on’);

%Test if old elite individual is fitter than new elite individual.

if MaxFitness(gen-1) > max(NewFitness)

RandIndivid = floor(rand*(PopSize - 1)) + 1;

%Choose random individual to replace.

EliteIndivid = sum( (MaxFitness(gen-1) == Fitness)*...

ones(1,TotStrLength) .* Population ); %Find elite individual.

NewPopulation(RandIndivid,1:end) = EliteIndivid;

%Keep elite individual string.

NewFitness(RandIndivid) = MaxFitness(gen-1);

%Keep elite individual fitness.

NewRealPop(RandIndivid,1:end) = sum( (MaxFitness(gen-1) ...

== Fitness)*ones(1,NoOfUnknowns) .* RealPop);
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%Keep the values of the unknowns attributed

%to the elite individual.

end

end

% *** REPLACE OLD POPULATION ***

Population = NewPopulation;

Fitness = NewFitness;

RealPop = NewRealPop;

MeanFitness(gen) = mean(Fitness); %Average fitness of population.

MaxFitness(gen) = max(Fitness); %Maximum fitness value.

MinFitness(gen) = min(Fitness); %Minimum fitness value.

SumFitness(gen) = sum(Fitness); %Total fitness of population.

% *** RUNNING TIMER ***

disp(’*****************************’)

disp([’Generation ’,num2str(gen)])

disp(’-------------------’)

disp([’Running Time: ’,num2str( etime(clock,Tstart) )])

disp([’Time Remaining: ’,...

num2str( (etime(clock,Tstart)/(gen)) * (MaxNoOfGens-(gen)) )])

disp(’*****************************’)

end

[OrderedFitness Index] = sort(Fitness,’descend’);

NoOfParOutputs = 5; %Number of fittest individuals selected

Output = RealPop(Index(1:NoOfParOutputs),1:end);

%Values of unknowns that optimise the objective function.

Tend = clock; %Stop algorithm timer.

Time = etime(Tend,Tstart); %Calculate time taken to run algorithm.
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[49] Putschögl, W., On Calibrating Stochastic Volatility Models with Time-Dependent Pa-

rameters, ArXiv e-prints (2010).

[50] Sakata, S., Shinichi Sakata’s Webpage, http://ssakata.sdf.org/.

[51] Schmelzle, M., Option Pricing Formulae using Fourier Transform: Theory and Appli-

cation, April 2010, Accessed at http://pfadintegral.com.

[52] Schoutens, W., Simons, E., Tistaert, J., A Perfect Calibration! Now What?, Wilmott

Magazine (2004).

[53] Shreve, S., Stochastic Calculus for Finance 2 - Continuous Time Models, Springer

Finance, 2008.

[54] South African Futures Exchange, ALSI Futures Option Data on the SAFEX Website,

Accessed at http://www.safex.co.za.

http://ssakata.sdf.org/
http://pfadintegral.com
http://www.safex.co.za


BIBLIOGRAPHY 152

[55] The JSE Limited, JSE Equity Options Explained, Tech. report, November 2009, Ac-

cessed at http://www.jse.co.za.

[56] The Mathworks, Help Files on the Mathworks Website - lsqnonlin, Accessed at http:

//www.mathworks.com.

[57] Walker, J., Fast Fourier Transforms, CRC Press, Inc., The United States of America,

1991.

[58] West, G., Calibration of the SABR Model in Illiquid Markets, Applied Mathematical

Finance 12 (2005), no. 4, 371–385.

[59] Zhu, J., Applications of Fourier Transform to Smile Modelling: Theory and Implemen-

tation, Springer Finance, 2010.

http://www.jse.co.za
http://www.mathworks.com
http://www.mathworks.com

	Title Page
	Abstract
	Acknowledgments
	Declaration
	Table of Contents
	List of Figures
	Introduction
	Stochastic Volatility Models
	The Heston Model
	The Bates Model
	The Double Jump Stochastic Volatility Model
	Price Path Comparisons for the Heston, Bates and SVJJ Models

	Pricing Methods
	Call Option Pricing with the Fast Fourier Transform
	Introductory Definitions
	The Fourier Transform for ATM and ITM Call Options
	The Fourier Transform for OTM Call Options
	Using the Fast Fourier Transform to Find the Call Option Price
	The Fast Fourier Transform Algorithm
	Characteristic Functions for the Heston, Bates and SVJJ Models
	The Complex Logarithm in the Heston Characteristic Function
	Drawbacks and Alternatives to the Fast Fourier Transform

	Monte Carlo Methods
	The Itô-Taylor Expansion
	The Euler-Maruyama Simulation Scheme
	The Exact Simulation Scheme

	A Comparison of Pricing Methods
	Parallel Monte Carlo Methods for the Heston Model

	Model Calibration
	Least-Squares Optimisation
	Calibration Methods
	Global Optimisation with the Genetic Algorithm
	Global Optimisation with Adaptive Simulated Annealing
	Local Optimisation with MATLAB lsqnonlin

	Calibration Results Using Synthetic Data
	Calibration of the Heston Model to Synthetic Data
	Calibration of the Bates Model to Synthetic Data
	Calibration of the SVJJ Model to Synthetic Data
	A Summary of Synthetic Data Calibration Results

	Calibration Results Using Market Data
	Calibration to ALSI Options Data
	Calibration to S&P 500 Options Data
	A Summary of Market Data Calibration Results
	A Comment on Calibration Speed Improvements with Parallel Computing Methods for the Genetic Algorithm


	Hedging
	A Change of Measure in the Heston Model
	Hedging Strategies for the Heston Model
	Delta Hedging in the Heston Model
	Delta-Sigma Hedging in the Heston Model
	Delta-Sigma-Gamma Hedging in the Heston Model
	Simulations of Hedging Methods in the Heston Model

	Hedging Strategies for the Bates and SVJJ Models
	Hedging Simulations for the Bates and SVJJ Models
	A Comment on Hedging Strategies when Jumps are Involved


	Conclusion
	Risk-Neutral Dynamics for Jump Diffusion Models
	Model Characteristic Functions
	The Heston Characteristic Function
	The Bates Characteristic Function
	The SVJJ Characteristic Function

	ASAMIN Installation Instructions
	Measure Changes for Jump Diffusion Models
	A Change of Measure for a Compound Poisson Process as well as a Brownian Motion
	A Change of Measure in the Bates Model
	A Change of Measure in the SVJJ Model

	Selected MATLAB Code
	Monte-Carlo Methods
	Fast Fourier Transform Pricing Methods
	The Genetic Algorithm

	Bibliography

