5 research outputs found

    Secondary dentin formation mechanism: The effect of attrition

    Get PDF
    Human dentin consists of a primary layer produced during tooth formation in early child-hood and a second layer which first forms upon tooth eruption and continues throughout life, termed secondary dentin (SD). The effect of attrition on SD formation was considered to be confined to the area subjacent to attrition facets. However, due to a lack of three‐dimensional methodologies to demonstrate the structure of the SD, this association could not be determined. Therefore, in the current study, we aimed to explore the thickening pattern of the SD in relation to the amount of occlusal and interproximal attrition. A total of 30 premolars (50–60 years of age) with varying attrition rates were evaluated using micro‐computerized tomography. The results revealed thickening of the SD below the cementoenamel junction (CEJ), mostly in the mesial and distal aspects of the root (p < 0.05). The pattern of thickening under the tooth cervix, rather than in proximity to attrition facets, was consistent regardless of the attrition level. The amount of SD thickening mildly corre-lated with occlusal attrition (r = 0.577, p < 0.05) and not with interproximal attrition. The thickening of the SD below the CEJ coincided with previous finite element models, suggesting that this area is mostly subjected to stress due to occlusal loadings. Therefore, we suggest that the SD formation might serve as a compensatory mechanism aimed to strengthen tooth structure against deflection caused by mechanical loading. Our study suggests that occlusal forces may play a significant role in SD formation

    Examination of the interproximal wear mechanism: Facet morphology and surface texture analysis

    No full text
    Dentition is considered a dynamic system with forces that directly affect dental treatment stability and success. Understanding the biomechanical forces that influence tooth alignment is essential for both planning and performing dental treatments, as well as for anthropological and evolutionary studies. While there is currently an abundance of research on the mechanics of dental wear at the occlusal surface, the mechanics of interproximal dental wear is largely unexplored. The fretting mechanism, a wear process resulting from small-amplitude cyclic motion of 2 solid contacting surfaces, was refuted as a possible mechanism for occlusal wear but has never been considered for interproximal wear. Therefore, the aim of the current study was to reveal the biomechanical process of the interproximal wear and to explore whether the fretting mechanism could be associated with this process. Premolar teeth with interproximal wear facets were examined by 3-dimensional surface texture analysis using a high-resolution confocal disc-scanning measuring system. The unique texture topography of 3 areas in the proximal surface of each tooth was analyzed by applying 3D dental surface texture analysis. Each area showed unique texture characteristics, presenting statistically significant differences between the inner area of the facet and its margins or the surface outside the facets borders. Based on these results, we concluded that fretting is a key mechanism involved in interproximal wear

    A Middle Pleistocene Homo from Nesher Ramla, Israel

    No full text
    It has long been believed that Neanderthals originated and flourished on the European continent. However, recent morphological and genetic studies have suggested that they may have received a genetic contribution from a yet unknown non-European group. Here we report on the recent discovery of archaic Homo fossils from the site of Nesher Ramla, Israel, which we dated to 140,000 to 120,000 years ago. Comprehensive qualitative and quantitative analyses of the parietal bones, mandible, and lower second molar revealed that this Homo group presents a distinctive combination of Neanderthal and archaic features. We suggest that these specimens represent the late survivors of a Levantine Middle Pleistocene paleodeme that was most likely involved in the evolution of the Middle Pleistocene Homo in Europe and East Asia

    A Middle Pleistocene Homo from Nesher Ramla, Israel

    No full text
    It has long been believed that Neanderthals originated and flourished on the European continent. However, recent morphological and genetic studies have suggested that they may have received a genetic contribution from a yet unknown non-European group. Here we report on the recent discovery of archaic Homo fossils from the site of Nesher Ramla, Israel, which we dated to 140,000 to 120,000 years ago. Comprehensive qualitative and quantitative analyses of the parietal bones, mandible, and lower second molar revealed that this Homo group presents a distinctive combination of Neanderthal and archaic features. We suggest that these specimens represent the late survivors of a Levantine Middle Pleistocene paleodeme that was most likely involved in the evolution of the Middle Pleistocene Homo in Europe and East Asia

    A Middle Pleistocene Homo from Nesher Ramla, Israel

    Full text link
    Our understanding of the origin, distribution, and evolution of early humans and their close relatives has been greatly refined by recent new information. Adding to this trend, Hershkovitz et al. have uncovered evidence of a previously unknown archaic Homo population, the “Nesher Ramla Homo” (see the Perspective by Mirazon Lahr). The authors present comprehensive qualitative and quantitative analyses of fossilized remains from a site in Israel dated to 140,000 to 120,000 years ago indicating the presence of a previously unrecognized group of hominins representing the last surviving populations of Middle Pleistocene Homo in Europe, southwest Asia, and Africa. In a companion paper, Zaidner et al. present the radiometric ages, stone tool assemblages, faunal assemblages, and other behavioral and environmental data associated with these fossils. This evidence shows that these hominins had fully mastered technology that until only recently was linked to either Homo sapiens or Neanderthals. Nesher Ramla Homo was an efficient hunter of large and small game, used wood for fuel, cooked or roasted meat, and maintained fires. These findings provide archaeological support for cultural interactions between different human lineages during the Middle Paleolithic, suggesting that admixture between Middle Pleistocene Homo and H. sapiens had already occurred by this tim
    corecore