13 research outputs found

    Solvent–Solute Interaction : Studied by Synchrotron Radiation Based Photo and Auger Electron Spectroscopies

    No full text
    Aqueous solutions were studied using photoelectron and Auger spectroscopy, based on synchrotron radiation and a liquid micro-jet setup. By varying the photon energy in photoelectron spectra, we depth profiled an aqueous tetrabutylammonium iodide (TBAI) solution. Assuming uniform angular emission from the core levels, we found that the TBA+ ions were oriented at the surface with the hydrophobic butyl arms sticking into the liquid. We investigated the association between ions and their neighbors in aqueous solutions by studying the electronic decay after core ionization. The (2p)−1 decay of solvated K+ and Ca2+ ions was studied. The main features in the investigated decay spectra corresponded to two-hole final states localized on the ions. The spectra also showed additional features, related to delocalized two-hole final states with vacancies on a cation and a neighboring water molecule. These two processes compete, and by comparing relative intensities and using the known rate for the localized decay, we determined the time-scale for the delocalized process for the two ions. We compared to delocalized electronic decay processes in Na+, Mg2+, and Al3+, and found that they were slower in K+ and Ca2+, due to different internal decay mechanisms of the ions, as well as external differences in the ion-solute distances and interactions. In the O 1s Auger spectra of aqueous metal halide solutions, we observed features related to delocalized two-hole final states with vacancies on a water molecule and a neighboring solvated anion. The relative intensity of these feature indicated that the strength of the interaction between the halide ions and water correlated with ionic size. The delocalized decay was also used to investigate contact ion pair formation in high concentrated potassium halide solutions, but no concrete evidence of contact ion pairs was observed.Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 72

    Solvent–Solute Interaction : Studied by Synchrotron Radiation Based Photo and Auger Electron Spectroscopies

    No full text
    Aqueous solutions were studied using photoelectron and Auger spectroscopy, based on synchrotron radiation and a liquid micro-jet setup. By varying the photon energy in photoelectron spectra, we depth profiled an aqueous tetrabutylammonium iodide (TBAI) solution. Assuming uniform angular emission from the core levels, we found that the TBA+ ions were oriented at the surface with the hydrophobic butyl arms sticking into the liquid. We investigated the association between ions and their neighbors in aqueous solutions by studying the electronic decay after core ionization. The (2p)−1 decay of solvated K+ and Ca2+ ions was studied. The main features in the investigated decay spectra corresponded to two-hole final states localized on the ions. The spectra also showed additional features, related to delocalized two-hole final states with vacancies on a cation and a neighboring water molecule. These two processes compete, and by comparing relative intensities and using the known rate for the localized decay, we determined the time-scale for the delocalized process for the two ions. We compared to delocalized electronic decay processes in Na+, Mg2+, and Al3+, and found that they were slower in K+ and Ca2+, due to different internal decay mechanisms of the ions, as well as external differences in the ion-solute distances and interactions. In the O 1s Auger spectra of aqueous metal halide solutions, we observed features related to delocalized two-hole final states with vacancies on a water molecule and a neighboring solvated anion. The relative intensity of these feature indicated that the strength of the interaction between the halide ions and water correlated with ionic size. The delocalized decay was also used to investigate contact ion pair formation in high concentrated potassium halide solutions, but no concrete evidence of contact ion pairs was observed.Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 72

    Core level photoelectron spectroscopy probed heterogeneous xenon/neon clusters

    No full text
    Binary rare gas clusters; xenon and neon which have a significant contrariety between sizes, produced by a co-expansion set up and have been studied using synchrotron radiation based x-ray photoelectron spectroscopy. Concentration ratios of the heterogeneous clusters; 1%, 3%, 5% and 10% were controlled. The core level spectra were used to determine structure of the mixed cluster and analyzed by considering screening mechanisms. Furthermore, electron binding energy shift calculations demonstrated cluster aggregation models which may occur in such process. The results showed that in the case of low mixing ratios of 3% and 5% of xenon in neon, the geometric structures exhibit xenon in the center and xenon/neon interfaced in the outer shells. However, neon cluster vanished when the concentration of xenon was increased to 10%

    Functionalized nanoparticles in aqueous surroundings probed by X-ray photoelectron spectroscopy

    No full text
    In this paper we present the first core-level photoelectron spectroscopic study of solid nanoparticles in liquid water. The particles are SiO2-based with an average diameter of 70 nm and functionalized with carboxylic groups. Despite that the sample is very dilute, we show that it is possible to obtain reasonable photoemission signal containing chemical information about both the ligands and the outermost parts of the SiO2-based core of the nanoparticles. We argue that this is due to a significant enrichment of the dispersed particles at the liquid/vapor interface. This proof-of-principle study expands the field of X-ray photoelectron spectroscopy by adding a new, wide and important class of systems that can be studied. (C) 2011 Elsevier B.V. All rights reserved

    No signature of contact ion pairs in the K 2p Auger spectra of highly concentrated potassium halide solutions

    No full text
    Possible ion pair formation in highly concentrated aqueous potassium halide solutions (fluoride, chloride, and bromide) has been investigated using Auger electron spectroscopy. The potassium Auger spectra exhibit features at high kinetic energy which are related to final states with vacancies on the potassium ion and a neighbouring water molecule. The potassium ion could possibly associate with a halide ion as well, giving rise to additional final states with a vacancy on the halide instead of a water molecule which should give rise to separable spectral features. The necessity of close proximity of the ions for such decays to occur would be strong evidence that contact ions pairs are present in the solution, but no features related to final states involving the anion were observed

    Ionic-Charge Dependence of tie Intermolecular Coulombic Decay Time Scale for Aqueous Ions Probed by the Core-Hole Clock

    No full text
    Auger electron spectroscopy combined with theoretical calculations has been applied to investigate the decay of the Ca 2p core hole of aqueous Ca2+. Beyond the localized two-hole final states on the calcium ion, originating from a normal Auger process, we have further identified the final states delocalized between the calcium ion and its water surroundings and produced by core level intermolecular Coulombic decay (ICD) processes. By applying the core-hole clock method, the time scale of the core level ICD was determined to be 33 +/- 1 fs for the 2p core hole of the aqueous Ca2+. The comparison of this time constant to those associated with the aqueous K+, Na+, Mg2+, and Al3+ ions reveals differences of 1 and up to 2 orders of magnitude. Such large variations in the characteristic time scales of the core level ICD processes is qualitatively explained by different internal decay mechanisms in different ions as well as by different ion solvent distances and interactions

    The protonation state of small carboxylic acids at the water surface from photoelectron spectroscopy

    No full text
    We report highly surface sensitive core-level photoelectron spectra of small carboxylic acids (formic, acetic and butyric acid) and their respective carboxylate conjugate base forms (formate, acetate and butyrate) in aqueous solution. The relative surface propensity of the carboxylic acids and carboxylates is obtained by monitoring their respective C1s signal intensities from a solution in which their bulk concentrations are equal. All the acids are found to be enriched at the surface relative to the corresponding carboxylates. By monitoring the PE signals of acetic acid and acetate as a function of total concentration, we find that the protonation of acetic acid is nearly complete in the interface layer. This is in agreement with literature surface tension data, from which it is inferred that the acids are enriched at the surface while (sodium) formate and acetate, but not butyrate, are depleted. For butyric acid, we conclude that the carboxylate form co-exists with the acid in the interface layer. The free energy cost of replacing an adsorbed butyric acid molecule with a butyrate ion at 1.0 M concentration is estimated to be > 5 kJ mol(-1). By comparing concentration dependent surface excess data with the evolution of the corresponding photoemission signals it is furthermore possible to draw conclusions about how the distribution of molecules that contribute to the excess is altered with bulk concentration

    Electronic Rearrangement upon the Hydrolyzation of Aqueous Formaldehyde Studied by Core-Electron Spectroscopies.

    No full text
    We have combined near edge X-ray absorption fine structure (NEXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS) to study the electronic rearrangement associated with the hydrolyzation of formaldehyde to methanediol in aqueous solution. The spectra are contrasted against those of aqueous formamide and urea, which are structurally similar but do not undergo hydrolysis in solution. We have recently demonstrated that the hydrolyzation of formaldehyde is manifested in the oxygen 1s NEXAFS spectrum by the disappearance of the oxygen 1s --> pi* absorption line. This is a characteristic signature that the CO double bond has been broken. In the present study we extend our investigation to include carbon 1s NEXAFS and XPS spectra of the three solutions. The carbon NEXAFS spectra show the C 1s --> pi* absorption line for each solute except for formaldehyde. Moreover, the carbon 1s photoelectron spectra exhibit a single peak for each solute. These observations point to a near complete hydrolyzation of formaldehyde, whereas formamide and urea remain intact in the solution. The analysis is further supported by density functional theory (DFT) calculations, showing a C 1s chemical shift of approximately 1.0 eV between hydrolyzed and nonhydrolyzed forms, which would give distinguishable features in the photoemission spectrum, if coexisting forms were present in the solutions

    Local Electronic Structure of Functional Groups in Glycine As Anion, Zwitterion, and Cation in Aqueous Solution.

    No full text
    Nitrogen and oxygen K emission spectra of glycine in the form of anions, zwitterions, and cations in aqueous solution are presented. It is shown that protonation has a dramatic influence on the local electronic structure and that the functional groups give a distinct spectral fingerprint
    corecore