11 research outputs found

    Interplay between antiferromagnetic order and spin polarization in ferromagnetic metal/electron-doped cuprate superconductor junctions

    Full text link
    Recently we proposed a theory of point-contact spectroscopy and argued that the splitting of zero-bias conductance peak (ZBCP) in electron-doped cuprate superconductor point-contact spectroscopy is due to the coexistence of antiferromagnetic (AF) and d-wave superconducting orders [Phys. Rev. B {\bf 76}, 220504(R) (2007)]. Here we extend the theory to study the tunneling in the ferromagnetic metal/electron-doped cuprate superconductor (FM/EDSC) junctions. In addition to the AF order, the effects of spin polarization, Fermi-wave vector mismatch (FWM) between the FM and EDSC regions, and effective barrier are investigated. It is shown that there exits midgap surface state (MSS) contribution to the conductance to which Andreev reflections are largely modified due to the interplay between the exchange field of ferromagnetic metal and the AF order in EDSC. Low-energy anomalous conductance enhancement can occur which could further test the existence of AF order in EDSC. Finally, we propose a more accurate formula in determining the spin polarization value in combination with the point-contact conductance data.Comment: 9 pages, 8 figure

    Emergence of topological phases from the extension of two-dimensional lattice with nonsymmorphic symmetries

    Full text link
    Young and Kane have given a great insight for 2D Dirac semimetals with nontrivial topology in the presence of nonsymmorphic crystalline symmetry. Based on one of 2D nonsymmorphic square lattice structures they proposed, we further construct a set of 3D minimal tight-binding models via vertically stacking the 2D nonsymmorphic lattice. Specifically, our model provides a platform to generate three topologically semimetallic phases such as Dirac nodal line semimetals, Weyl nodal line semimetals and Weyl semimetals. The off-centered mirror symmetry sufficiently protects nodal lines emerging within mirror-invariant plane with a nontrivial mirror invariant nMZn_{M\mathbb{Z}}, whereas twofold screw rotational symmetry protects nontrivial Weyl nodal points with topological charge C=2C=2. Interestingly, Weyl nodal loops are generated without mirror symmetry protection, where nontrivial "drumhead" surface states emerge within loops. In the presence of both time-reversal and inversion symmetries, the emergence of weak topological insulator phases is discussed as well.Comment: 8 pages, 6 figures and 1 tabl

    Tunneling in Different Kinds of Metal/Insulator/Superconductor Junctions

    No full text
    [[abstract]]This thesis applies the theory of tunneling to study different kinds of metal/insulator/ superconductor (N/I/S) junctions. Chapter 1 gives a brief review of the BCS theory. Chapter 2 mentions some basic properties of high-temperature superconductors (HTSC). Possible coexistence of antiferromagnetic (AF) order and the superconducting order in HTSC is emphasized. In chapter 3, theories of tunneling are presented, namely the Blonder-Tinkham-Klapwijk model approach and the tunneling Hamiltonian approach. In chapter 4, we summarize recent experimental and theoretical works on different kinds of N/I/S junctions. Chapter~5 is based on one of my recent paper to be published. We extend the theory of point-contact spectroscopy [Phys. Rev. B 76, 220504(R) (2007). This paper argued that the splitting of zero-bias conductance peak (ZBCP) in electron-doped cuprate superconductor point-contact spectroscopy is due to the coexistence of AF and dd-wave superconducting orders.] to study the ferromagnetic metal/electron-doped cuprate superconductor (FM/EDSC) junctions. In addition to the AF order, effects of spin polarization, Fermi-wave vector mismatch (FWM) between the FM and EDSC regions, and effective barrier are also considered. They play a crucial role in determining the spin polarization value. It is shown that there exits the midgap surface state (MSS) contribution to the ZBCP in the junction and Andreev reflections are largely modified due to the exchange field of ferromagnetic metal. A more accurate formula is proposed for determining the spin polarization value in combination with the conductance in point-contact experimental data. Finally in Chapter~6, a brief conclusion and future prospects are given.

    Subchondral bone proteomics in osteoarthritis: Current status and perspectives

    No full text
    Osteoarthritis (OA) is the most common degenerative joint disorder. OA was conceived as a “wear and tear” problem of articular cartilage, yet there is a lack of treatment options to delay or rescue articular cartilage degeneration once it is established. Actually, the degradation of articular cartilage is related to a complex network of biochemical pathways involving the diffusion of catabolic factors within and between different joint tissues and particularly bone and cartilage. Advanced proteomics technology provides a powerful tool to allow us to build up a library of such factors. Factors that govern the bone-cartilage interplay could be the candidate diagnostic biomarkers and therapeutic targets for OA. Currently, a growing body of proteomic studies has been done to unveil a number of inflammatory cytokines, proteases, and cartilaginous matrix cleavages in the blood serum, synovial fluid, and articular cartilage from OA patients. Little information is available regarding the protein profiles of disturbances at subchondral bone in the pathophysiology of OA. The technical difficulties in protein extraction from tissues particularly bone and quantitative analyses of protein profile are discussed; cellular proteomics of the defective osteoblasts and secretomics for the osteoblasts–chondrocytes crosstalk are proposed to supplement the information obtained from the bone tissue proteomics

    SaeR as a Novel Target for Antivirulence Therapy against Staphylococcus aureus

    No full text
    ABSTRACT:Staphylococcus aureus is a major human pathogen responsible for a wide range of clinical infections. SaeRS is one of the two-component systems in S. aureus that modulate multiple virulence factors. Although SaeR is required for S. aureus to develop an infection, inhibitors have not been reported. Using an in vivo knockdown method, we demonstrated that SaeR is targetable for the discovery of antivirulence agent. HR3744 was discovered through a high-throughput screening utilising a GFP-Lux dual reporter system driven by saeP1 promoter. ,. The antivirulence efficacy of HR3744 was tested using Western blot, Quantitative Polymerase Chain Reaction, leucotoxicity, and hemolysis tests. In electrophoresis mobility shift assay, HR3744 inhibited SaeR-DNA probe binding. WaterLOGSY-NMR test showed HR3744 directly interacted with SaeR's DNA-binding domain When saeR was deleted, HR3744 lost its antivirulence property, validating the target specificity. Virtual docking and mutagenesis were used to confirm the target's specificity. When Glu159 was changed to Asn, the bacteria developed resistance to HR3744. A structure-activity relationship study revealed that a molecule with a slight modification did not inhibit SaeR, indicating the selectivity of HR3744. Interestingly, we found that SAV13, an analogue of HR3744, was four-times more potent than the HR3744 and demonstrated identical antivirulence property and target specificity. In a mouse bacteraemia model, both HR3744 and SAV13 exhibited in vivo effectiveness. Collectively, we identified the first SaeR inhibitor, which exhibited in vitro and in vivo antivirulence property, and proved that SaeR could be a novel target for developing antivirulence drugs against S. aureus infections
    corecore