271 research outputs found

    Helical Turing patterns in the Lengyel-Epstein model in thin cylindrical layers

    Get PDF
    The formation of Turing patterns was investigated in thin cylindrical layers using the Lengyel-Epstein model of the chlorine dioxide-iodine-malonic acid reaction. The influence of the width of the layer W and the diameter D of the inner cylinder on the pattern with intrinsic wavelength l were determined in simulations with initial random noise perturbations to the uniform state for W< l/2 and D l or lower. We show that the geometric constraints of the reaction domain may result in the formation of helical Turing patterns with parameters that give stripes (b ÂĽ 0.2) or spots (b ÂĽ 0.37) in two dimensions. For b ÂĽ 0.2, the helices were composed of lamellae and defects were likely as the diameter of the cylinder increased. With b ÂĽ 0.37, the helices consisted of semi-cylinders and the orientation of stripes on the outer surface (and hence winding number) increased with increasing diameter until a new stripe appeared

    Nonequilibrium processes in Polymers undergoing Interchange Reactions. Part 2: Reaction-Diffusion Processes

    Get PDF
    A reactiodffusion system of polymers undergoing interchange reactions is studied. The equation that describes the dynamics of the system is similar to the Boltzmann equation for a gas of hard spheres. We consider a one-dimensionsl system in which the average length and the concentrations at the boundaries are fixed. The resulting steady states are obtained analytically and with numerical integration of equations obtained by using a local equilibrium approximation. Monte Carlo simulations of experimentally realizable conditions were performed and compared. The results reveal a nonlinear distribution of molecular concentration and mass. The entropy of the polymer distributions is calculated as function of position and shown to be less than the entropy for the distributions without interchange reactions. The diffusion of a square pulse is also considered

    Thermal Frontal Polymerization with a Thermally Released Redox Catalyst

    Get PDF
    We studied thermal frontal polymerization using a redox systemin an attempt to lower the temperature of the frontally polymerizable system while increasing the front velocity so as to obtain a self-sustaining front in a thinner layer than without the redox components. A cobalt-containing polymer with a melting point of 63 C (Intelimer 6050X11) and cumene hydroperoxide were used with a triacrylate. The use of the Intelimer decreased the front velocity but allowed fronts to propagate in thinner layers and withmore filler while still having a pot life of days. Nonplanar modes of propagation occurred. Fronts propagated faster when 6-O-palmitoyl-L-ascorbic acid was used as a reductant. Interestingly, fronts were also faster with the reductant even without the Intelimer if kaolin clay was the filler; however, the pot life was significantly reduce

    Evidence for the Existence of an Effective Interfacial Tension between Miscible Fluids: Isobutyric Acid-Water and 1-Butanol-Water in a Spinning-Drop Tensiometer

    Get PDF
    We report definitive evidence for an effective interfacial tension between two types of miscible fluids using spinning-drop tensiometry (SDT). Isobutyric acid (IBA) and water have an upper critical solution temperature (UCST) of 26.3 degrees C. We created a drop of the IBA-rich phase in the water-rich phase below the UCST and then increased the temperature above it. Long after the fluids have reached thermal equilibrium, the drop persists. By plotting the inverse of the drop radius cubed (r(-3)) vs the rotation rate squared (omega(2)), we confirmed that an interfacial tension exists and estimated its value. The transition between the miscible fluids remained sharp instead of becoming more diffuse, and the drop volume decreased with time. We observed droplet breakup via the Rayleigh-Tomotika instability above the UCST when the rotation rate was decreased by 80%, again demonstrating the existence of an effective inter-facial tension. When pure IBA was injected into water above the UCST, drops formed inside the main drop even as the main drop decreased in volume with time. We also studied 1-butanol in water below the solubility limit. Effective interfacial tension values measured over time were practically constant, while the interface between the two phases remains sharp as the volume of the drop declines. The effective interfacial tension was found to be insensitive to changes in temperature and always larger than the equilibrium interfacial tension. Although these results may not apply to all miscible fluids, they clearly show that an effective interfacial tension can exist and be measured by SDT for some systems

    Convective Fingering of an Autocatalytic Reaction Front

    Full text link
    We report experimental observations of the convection-driven fingering instability of an iodate-arsenous acid chemical reaction front. The front propagated upward in a vertical slab; the thickness of the slab was varied to control the degree of instability. We observed the onset and subsequent nonlinear evolution of the fingers, which were made visible by a {\it p}H indicator. We measured the spacing of the fingers during their initial stages and compared this to the wavelength of the fastest growing linear mode predicted by the stability analysis of Huang {\it et. al.} [{\it Phys. Rev. E}, {\bf 48}, 4378 (1993), and unpublished]. We find agreement with the thickness dependence predicted by the theory.Comment: 11 pages, RevTex with 3 eps figures. To be published in Phys Rev E, [email protected], [email protected], [email protected]

    Correction: Porous monoliths synthesized via polymerization of styrene and divinyl benzene in nonaqueous deep-eutectic solvent-based HIPEs (RSC Advances (2015) 5 (23255-23260) DOI: 10.1039/C5RA02374B)

    Get PDF
    © 2018 The Royal Society of Chemistry. The authors regret that there was an error in the results and discussion section of the original article. On page 23257, the text read, The surfactant employed here was sorbitan monooleate . This should have read, The surfactant employed here was sorbitan stearate . The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers

    Frontal Polymerizations: From Chemical Perspectives to Macroscopic Properties and Applications

    Get PDF
    The synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction. The subsequent reaction exothermicity provides local heating; the transport of this thermal energy to neighboring monomers in either a liquid or gel-like state results in a self-perpetuating reaction zone that provides fully cured thermosets and thermoplastics. Propagation of this polymerization front continues through the unreacted monomer media until either all reactants are consumed or sufficient heat loss stalls further reaction. Several different polymerization mechanisms support frontal processes, including free-radical, cat- or anionic, amine-cure epoxides, and ring-opening metathesis polymerization. The choice of monomer, initiator/catalyst, and additives dictates how fast the polymer front traverses the reactant medium, as well as the maximum temperature achievable. Numerous applications of frontally generated materials exist, ranging from porous substrate reinforcement to fabrication of patterned composites. In this review, we examine in detail the physical and chemical phenomena that govern frontal polymerization, as well as outline the existing applications

    Framing Social Justice: The Ties That Bind a Multinational Occupational Community

    Get PDF
    The notion of a frame is central to the conceptualisation of social justice and the grounding of social justice claims. Influential theories of social justice are typically grounded in national or cosmopolitan framings. Those entitled to raise claims of injustice are identified as citizens of states or the globe, respectively. The re-visioning of understandings of space and belonging, incumbent in the processes of globalisation, problematises static geographical framings. We offer an alternative lens and argue for the inclusion of sociological data in accounts of social justice to identify the relevant framing of the community of entitlement. Drawing on secondary analysis of a qualitative dataset, we explore the case of multinational seafarers caught at the intersection of competing appeals to nationality and commonality as an exemplar of transnational workers. And, argue that there are compelling grounds to treat this group of multinational seafarers as a community of entitlement
    • …
    corecore