41 research outputs found

    Flow cytometric enumeration of CD34+ hematopoietic stem and progenitor cells in leukapheresis product and bone marrow for clinical transplantation: a comparison of three methods.

    Get PDF
    Flow cytometric enumeration of CD34+ hematopoietic stem and progenitor cells (HSCs) is widely used for evaluation of graft adequacy of peripheral blood and bone marrow stem cell grafts. In the present study, we review and compare the major counting techniques of stem and progenitor cells. The methods are: the Milan/Mullhouse protocol, two-platform ISHAGE (International Society of Hematotherapy and Graft Engineering) and single-platform ISHAGE analysis system. According to the Milan/Mulhouse protocol, HSCs are identified by CD34 antibody staining and easy gating strategy. The ISHAGE guidelines for detection of CD34+ cells are based on a four-parameter flow cytometry method (CD34PE/CD45PerCP staining, side and forward angle light scatter) thus employing multiparameter gating strategy. With two-platform ISHAGE protocol, an absolute CD34+ count is generated by incorporating the leukocyte count from an automated hematology analyser. The single-platform ISHAGE method to determine the absolute CD34+ count directly from a flow cytometer includes the use of Trucount tubes (Becton Dickinson) with a known number of fluorescent beads. CD34+ cells were quantified in mobilized peripheral blood, collected by leukapheresis, and bone marrow from 42 samples from patients with hematological malignancies. The differences against the means display low disagreement between the Milan/Mulhouse and ISHAGE protocols, with discrepancies of up to 2.5% (two-platform ISHAGE)--2.6% (single-platform ISHAGE) in enumeration of CD34+ cells in leukapheresis product and 4.8% (two-platform ISHAGE)--4.9% (single-platform ISHAGE) in bone marrow. Our results show high correlation among all three methods. Since the three protocols are compatible, choosing the most convenient in terms of costs, simplicity and compliance with clinical results appears to be a logical consequence

    32 Bezpośrednie wstrzykiwanie rTNFα do guzów nowotworowych wątroby

    Get PDF
    W około 70% badań sekcyjnych stwierdza się obecność guzów nowotworowych w wątrobie i są to głównie guzy przerzutowe. rTNFα jest cytokiną wykazującą cytotoksyczne działanie na komórki nowotworowe i jest stosowany w terapii eksperymentalnej nowotworów.W okresie od grudnia 1993 do stycznia 1995 r. rTNFα wstrzyknięto doguzowo z powodu zmian ogniskowych w wątrobie u 18 chorych (11 kobiet, 7 mężczyzn), badaniu klinicznemu zostali poddani chorzy z rozpoznaniami: pierwotny rak wątroby – 2 chorych, rak jelita grubego – 12 chorych, rak pęcherzyka żółciowego – 1 chorych, czerniak złośliwy – 1 chory, rak sutka – 1 chory, rak trzustki – 1 chory. rTNFα wstrzykiwano bezpośrednio do ognisk nowotworowych w wątrobie pod kontrolą ultrasonograficzną, w dawce od 100 do 500 μg (śr. 300 μg).U wszystkich chorych oceniano parametry kliniczne tj. temperaturę, czynność serca, ciśnienie tętnicze oraz laboratoryjne (biochemiczne i morfologiczne z krwi obwodowej). Dodatkowo u 6 chorych a rakiem jelita grubego, którzy otrzymywali 500μg rTNFα w surowicy oceniano kinetykę zmian stężenia rTNFα. Zmiany w obrębie ognisk nowotworowych oceniano w badaniu ultrasonograficznym.W badanej grupie chorych stwierdzono, że u 1 chorego z pierwotnym rakiem wątroby nie uzyskano zmiany obrazu ognisk patologicznych pod wpływem podawania rTNFα. U pozostałych 17 chorych stwierdzono zmiany w obrębie guzów obstrzykniętych tą cytokiną o charakterze hiperechogenicznym. W okresie od kilku do 72 godzin od chwili wstrzyknięcia stwierdzono normalizację parametrów klinicznych, biochemicznych i morfologicznych krwi. Największe stężenie rTNFα w surowicy krwi obwodowej stwierdzono w 1 godzinę od chwili wstrzyknięcia rTNFα −133,96 +/−291,40 pg/ml (ta wartość przed leczeniem wynosiła 279,72+/−23,20 pg/ml). Czas przeżycia chorych od chwili doguzowego wstrzyknięcia rTNFα wynosił od4 do 43 tygodni (mediana 18,8 tygodni)

    Remifentanil-induced alterations in neutrophil numbers after surgery

    Get PDF

    In vivo effects of interleukin-17 on haematopoietic cells and cytokine release in normal mice

    Get PDF
    In order to gain more insight into mechanisms operating on the haematopoietic activity of the T-cell-derived cytokine, interleukin-17 (IL-17) and target cells that first respond to its action in vivo, the influence of a single intravenous injection of recombinant mouse IL-17 on bone marrow progenitors, further morphologically recognizable cells and peripheral blood cells was assessed in normal mice up to 72 h after treatment. Simultaneously, the release of IL-6, IL-10, IGF-I, IFN-gamma and NO by bone marrow cells was determined. Results showed that, in bone marrow, IL-17 did not affect granulocyte-macrophage (CFU-GM) progenitors, but induced a persistant increase in the number of morphologically recognizable proliferative granulocytes (PG) up to 48 h after treatment. The number of immature erythroid (BFU-E) progenitors was increased at 48 h, while the number of mature erythroid (CFU-E) progenitors was decreased up to 48 h. In peripheral blood, white blood cells were increased 6 h after treatment, mainly because of the increase in the number of lymphocytes. IL-17 also increased IL-6 release and NO production 6 h after administration. Additional in vitro assessment on bone marrow highly enriched Lin(-) progenitor cells, demonstrated a slightly enhancing effect of IL-17 on CFU-GM and no influence on BFU-E, suggesting the importance of bone marrow accessory cells and secondary induced cytokines for IL-17 mediated effects on progenitor cells. Taken together, these results demonstrate that in vivo IL-17 affects both granulocytic and erythroid lineages, with more mature haematopoietic progenitors responding first to its action. The opposite effects exerted on PG and CFU-E found at the same time indicate that IL-17, as a component of a regulatory network, is able to intervene in mechanisms that shift haematopoiesis from the erythroid to the granulocytic lineage

    Effect of intraperitoneally administered recombinant murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) on the cytotoxic potential of murine peritoneal cells

    Get PDF
    We studied the effect of recombinant murine granulocyte–macrophage colony-stimulating factor(rmGM-CSF) on the cytotoxic potential of murine peritoneal cells. Mice received rmGM-CSF intraperitoneally using different dosages and injection schemes. At different time points after the last injection, mice were sacrificed, peritoneal cells isolated and their tumour cytotoxicity was determined by a cytotoxicity assay using syngeneic [methyl-3H]thymidine-labelled colon carcinoma cells. Also, the cytotoxic response to a subsequent in vitro stimulation with lipopolysaccharide was determined. Upon daily injection of 6000–54 000 U rmGM-CSF over a 6-day period, the number of peritoneal cells increased over ten fold with the highest rmGM-CSF dose. Increases in cell numbers was mainly due to increases in macrophage numbers. Upon injection of three doses of 3000 U rmGM-CSF per day for 3 consecutive days, the number of macrophages remained elevated for minimally 6 days. Although the peritoneal cells from rmGM-CSF-treated mice were not activated to a tumoricidal state, they could be activated to high levels of cytotoxicity with an additional in vitro stimulation of lipopolysaccharide. Resident cells isolated from control mice could be activated only to low levels of tumour cytotoxicity with lipopolysaccharide. Tumour cytotoxicity strongly correlated with nitric oxide secretion. When inhibiting nitric oxide synthase, tumour cell lysis decreased. Thus, the expanded peritoneal cell population induced by multiple injections of rmGM-CSF has a strong tumour cytotoxic potential and might provide a favourable condition for immunotherapeutic treatment of peritoneal neoplasms. © 1999 Cancer Research Campaig

    LILRA2 Selectively Modulates LPS-Mediated Cytokine Production and Inhibits Phagocytosis by Monocytes

    Get PDF
    The activating immunoglobulin-like receptor, subfamily A, member 2 (LILRA2) is primarily expressed on the surface of cells of the innate immunity including monocytes, macrophages, neutrophils, basophils and eosinophils but not on lymphocytes and NK cells. LILRA2 cross-linking on monocytes induces pro-inflammatory cytokines while inhibiting dendritic cell differentiation and antigen presentation. A similar activating receptor, LILRA4, has been shown to modulate functions of TLR7/9 in dendritic cells. These suggest a selective immune regulatory role for LILRAs during innate immune responses. However, whether LILRA2 has functions distinct from other receptors of the innate immunity including Toll-like receptor (TLR) 4 and FcγRI remains unknown. Moreover, the effects of LILRA2 on TLR4 and FcγRI-mediated monocyte functions are not elucidated. Here, we show activation of monocytes via LILRA2 cross-linking selectively increased GM-CSF production but failed to induce IL-12 and MCP-1 production that were strongly up-regulated by LPS, suggesting functions distinct from TLR4. Interestingly, LILRA2 cross-linking on monocytes induced similar amounts of IL-6, IL-8, G-CSF and MIP-1α but lower levels of TNFα, IL-1β, IL-10 and IFNγ compared to those stimulated with LPS. Furthermore, cross-linking of LILRA2 on monocytes significantly decreased phagocytosis of IgG-coated micro-beads and serum opsonized Escherichia coli but had limited effect on phagocytosis of non-opsonized bacteria. Simultaneous co-stimulation of monocytes through LILRA2 and LPS or sequential activation of monocytes through LILRA2 followed by LPS led lower levels of TNFα, IL-1β and IL-12 production compared to LPS alone, but had additive effect on levels of IL-10 and IFNγ but not on IL-6. Interestingly, LILRA2 cross-linking on monocytes caused significant inhibition of TLR4 mRNA and protein, suggesting LILRA2-mediated suppression of LPS responses might be partly via regulation of this receptor. Taken together, we provide evidence that LILRA2-mediated activation of monocytes is significantly different to LPS and that LILRA2 selectively modulates LPS-mediated monocyte activation and FcγRI-dependent phagocytosis

    G-CSF/anti-G-CSF antibody complexes drive the potent recovery and expansion of CD11b+Gr-1+ myeloid cells without compromising CD8+ T cell immune responses

    Get PDF
    BACKGROUND: Administration of recombinant G-CSF following cytoreductive therapy enhances the recovery of myeloid cells, minimizing the risk of opportunistic infection. Free G-CSF, however, is expensive, exhibits a short half-life, and has poor biological activity in vivo. METHODS: We evaluated whether the biological activity of G-CSF could be improved by pre-association with anti-G-CSF mAb prior to injection into mice. RESULTS: We find that the efficacy of G-CSF therapy can be enhanced more than 100-fold by pre-association of G-CSF with an anti-G-CSF monoclonal antibody (mAb). Compared with G-CSF alone, administration of G-CSF/anti-G-CSF mAb complexes induced the potent expansion of CD11b(+)Gr-1(+) myeloid cells in mice with or without concomitant cytoreductive treatment including radiation or chemotherapy. Despite driving the dramatic expansion of myeloid cells, in vivo antigen-specific CD8(+) T cell immune responses were not compromised. Furthermore, injection of G-CSF/anti-G-CSF mAb complexes heightened protective immunity to bacterial infection. As a measure of clinical value, we also found that antibody complexes improved G-CSF biological activity much more significantly than pegylation. CONCLUSIONS: Our findings provide the first evidence that antibody cytokine complexes can effectively expand myeloid cells, and furthermore, that G-CSF/anti-G-CSF mAb complexes may provide an improved method for the administration of recombinant G-CSF

    Erythropoiesis in diffusion chambers with human bone marrow implanted intraperitoneally in mice

    No full text
    corecore