4 research outputs found
Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53
The p53 pro-apoptotic tumor suppressor is mutated or functionally altered in most cancers. In epithelial tumors induced by “high-risk” mucosal Human Papillomaviruses (hrm-HPVs), including human cervical carcinoma and a growing number of head-and-neck cancers (1), p53 is degraded by the viral oncoprotein E6 (2). In this process, E6 binds to a short LxxLL consensus sequence within the cellular ubiquitin ligase E6AP (3). Subsequently, the E6/E6AP heterodimer recruits and degrades p53 (4). Neither E6 nor E6AP are separately able to recruit p53 (3,5), and the precise mode of assembly of E6, E6AP and p53 is unknown. Here, we solved the crystal structure of a ternary complex comprising full-length HPV16 E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumor suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against HPV-mediated oncogenesis
Angew Chem Int Ed Engl
The E6 oncoproteins of high-risk mucosal (hrm) human papillomaviruses (HPVs) contain a pocket that captures LxxLL motifs and a C-terminal motif that recruits PDZ domains, with both functions being crucial for HPV-induced oncogenesis. A chimeric protein was built by fusing a PDZ domain and an LxxLL motif, both known to bind E6. NMR spectroscopy, calorimetry and a mammalian protein complementation assay converged to show that the resulting PDZ-LxxLL chimera is a bivalent nanomolar ligand of E6, while its separated PDZ and LxxLL components are only micromolar binders. The chimera binds to all of the hrm-HPV E6 proteins tested but not to low-risk mucosal or cutaneous HPV E6. Adenovirus-mediated expression of the chimera specifically induces the death of HPV-positive cells, concomitant with increased levels of the tumour suppressor P53, its transcriptional target p21, and the apoptosis marker cleaved caspase 3. The bifunctional PDZ-LxxLL chimera opens new perspectives for the diagnosis and treatment of HPV-induced cancers
Quantifying domain-ligand affinities and specificities by high-throughput holdup assay
International audienceMany protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this end, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to 1,000 domain-motif equilibrium binding affinities per day. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from human papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human 'PDZome'. We obtained sharply sequence-dependent binding profiles that quantitatively describe the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has wide potential for quantifying the specificities of interactomes