426 research outputs found

    Harnessing a versatile robust lactonase for biotechnological applications

    Get PDF
    Extremozymes have gained considerable interest as they could meet industrial requirements. Among these, SsoPox is a hyperthermostable enzyme isolated from the archaeon Sulfolobus solfataricus1. This enzyme is a lactonase catalyzing the hydrolysis of acyl-homoserine lactones; these molecules are involved in Gram-negative bacterial communication referred to as quorum sensing2. SsoPox exhibits promiscuous phosphotriesterase activity for the degradation of organophosphorous chemicals including insecticides and chemical warfare agents3. Owing to its bi-functional catalytic abilities as well as its intrinsic stability, SsoPox is appealing for many applications, having potential uses in the agriculture, defense, food and health industries. This enzyme have been rationally engineered and highly improved lactonase and phosphotriesterase variants were isolated4. Their biotechnological properties were investigated and their resistance against diverse process-like and operating conditions such as heat resistance, contact with organic solvents, sterilization, storage and immobilization were underlined5. Lactonase improved variants were shown to drastically reduce virulence and biofilm formation in clinical isolates of Pseudomonas aeruginosa and to decrease mortality in rat pneumonia model6,7. The antibiofilm capacity of the enzyme was also proved to be of outmost interest for antifouling applications. Enhanced phosphotriesterase variants were shown to efficiently decontaminate a broad panel of organophosphorus insecticides and were successfully incorporated into filtration devices for bioremediation purposes8. The degradation products generated through enzyme hydrolysis drastically reduced toxicity and increased regeneration capacity in planarian, an original Plathelmintes model. Regarding their tremendous stability these variants are currently used to develop antibacterial medical devices, antifouling paintings and insecticide bioremediation tools. 1. Elias, M. et al. Structural Basis for Natural Lactonase and Promiscuous Phosphotriesterase Activities. J. Mol. Biol. 379, 1017–1028 (2008). 2. Bzdrenga, J. et al. Biotechnological applications of quorum quenching enzymes. Chem. Biol. Interact. (2016). doi:10.1016/j.cbi.2016.05.028 3. Jacquet, P. et al. Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes. Environ. Sci. Pollut. Res. 1–19 (2016). doi:10.1007/s11356-016-6143-1 4. Hiblot, J., Gotthard, G., Elias, M. & Chabriere, E. Differential Active Site Loop Conformations Mediate Promiscuous Activities in the Lactonase SsoPox. PLoS ONE 8, e75272 (2013). 5. Rémy, B. et al. Harnessing hyperthermostable lactonase from Sulfolobus solfataricus for biotechnological applications. Sci. Rep. 6, (2016). 6. Guendouze, A. et al. Effect of quorum quenching lactonase in clinical isolates of Pseudomonas aeruginosa and comparison with quorum sensing inhibitors. Front. Microbiol. 8, (2017). 7. Hraiech, S. et al. Inhaled Lactonase Reduces Pseudomonas aeruginosa Quorum Sensing and Mortality in Rat Pneumonia. PLoS ONE 9, e107125 (2014). 8. Hiblot, J., Gotthard, G., Chabriere, E. & Elias, M. Characterisation of the organophosphate hydrolase catalytic activity of SsoPox. Sci. Rep. 2, (2012)

    Low serum magnesium concentrations are associated with a high prevalence of premature ventricular complexes in obese adults with type 2 diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Premature ventricular complexes (PVC) predict cardiovascular mortality among several adult populations. Increased arrhythmia prevalence has been reported during controlled magnesium (Mg) depletion studies in adults. We thus hypothesized that serum magnesium (sMg) concentrations are inversely associated with the prevalence of PVC in adults at high cardiovascular risk.</p> <p>Methods</p> <p>Anthropometric, demographic and lifestyle characteristics were assessed in 750 Cree adults, aged > 18 yrs, who participated in an age-stratified, cross-sectional health survey in Quebec, Canada. Holter electrocardiograms recorded heart rate variability and cardiac arrhythmias for two consecutive hours. Multivariate logistic regression was used to evaluate the associations between sMg and PVC.</p> <p>Results</p> <p>PVC prevalence in adults with hypomagnesemia (sMg ≤ 0.70 mmol/L) was more than twice that of adults without hypomagnesemia (50% vs. 21%, <it>p </it>= 0.015); results were similar when adults with cardiovascular disease history were excluded. All hypomagnesemic adults with PVC had type 2 diabetes (T2DM). Prevalence of PVC declined across the sMg concentration gradient in adults with T2DM only (<it>p </it>< 0.001 for linear trend). In multivariate logistic regressions adjusted for age, sex, community, body mass index, smoking, physical activity, alcohol consumption, kidney disease, antihypertensive and cholesterol lowering drug use, and blood docosahexaenoic acid concentrations, the odds ratio of PVC among T2DM subjects with sMg > 0.70 mmol/L was 0.24 (95% CI: 0.06-0.98) <it>p </it>= 0.046 compared to those with sMg ≤ 0.70 mmol/L.</p> <p>Conclusions</p> <p>sMg concentrations were inversely associated with the prevalence of PVC in patients with T2DM in a dose response manner, indicating that suboptimal sMg may be a contributor to arrhythmias among patients with T2DM.</p

    Suppression by thimerosal of ex-vivo CD4+ T cell response to influenza vaccine and induction of apoptosis in primary memory T cells.

    Get PDF
    International audienceThimerosal is a preservative used widely in vaccine formulations to prevent bacterial and fungal contamination in multidose vials of vaccine. Thimerosal was included in the multidose non-adjuvanted pandemic 2009 H1N1 vaccine Panenza. In the context of the analysis of the ex-vivo T cell responses directed against influenza vaccine, we discovered the in vitro toxicity Panenza, due to its content in thimerosal. Because thimerosal may skew the immune response to vaccines, we investigated in detail the ex-vivo effects of thimerosal on the fate and functions of T cells in response to TCR ligation. We report that ex-vivo exposure of quiescent or TCR-activated primary human T cells to thimerosal induced a dose-dependent apoptotic cell death associated with depolarization of mitochondrial membrane, generation of reactive oxygen species, cytochrome c release from the mitochondria and caspase-3 activation. Moreover, exposure to non-toxic concentrations of thimerosal induced cell cycle arrest in G0/G1 phase of TCR-activated T cells, and inhibition of the release of proinflammatory cytokines such as IFN gamma, IL-1 beta, TNF alpha, IL-2, as well as the chemokine MCP1. No shift towards Th2 or Th17 cells was detected. Overall these results underline the proapoptotic effect of thimerosal on primary human lymphocytes at concentrations 100 times less to those contained in the multidose vaccine, and they reveal the inhibitory effect of this preservative on T-cell proliferation and functions at nanomolar concentrations
    corecore