76 research outputs found

    Functional assessments for decision-making regarding return to sports following ACL reconstruction. Part II: clinical application of a new test battery

    Get PDF
    PURPOSE: The purpose of this study was to utilize a novel functional test system to facilitate determining the time of return to sports following ACL reconstruction. METHODS: Sixty-nine patients with unilateral ACL reconstruction were included in this pilot study. All the patients performed a standardized test battery consisting of one- and two-legged stability tests, counter movement jumps, speedy jumps, plyometric jumps and a quick feed test. The first test was administered on average 170.7 ± 75.1 days post-operatively, and the retest was administered on average 239.1 ± 79.7 days post-operatively. The values of the subtests were compared with the normative data of healthy gender- and age-matched controls to determine the functional capacities of patients following ACL reconstruction. RESULTS: After the first and second test, 15.9 and 17.4 % of the patients met the criteria for a “return to non-competitive sports”. One patient fulfilled the criteria for a “return to competitive sports” after the second test battery. The most limiting factor was a poor LSI value of <90 % if the dominant leg was involved and <80 % if the non-dominant leg was involved. CONCLUSION: This test battery demonstrates that, in terms of neuromuscular abilities, most patients, compared to healthy controls, are most likely not ready for a safe return to sports, even 8 months post-operatively. This should be considered in the future to determine when it is safe to return to sports and should avoid a premature return to competitive sports. LEVEL OF EVIDENCE: III

    The Application of DNA Barcodes for the Identification of Marine Crustaceans from the North Sea and Adjacent Regions

    Get PDF
    During the last years DNA barcoding has become a popular method of choice for molecular specimen identification. Here we present a comprehensive DNA barcode library of various crustacean taxa found in the North Sea, one of the most extensively studied marine regions of the world. Our data set includes 1,332 barcodes covering 205 species, including taxa of the Amphipoda, Copepoda, Decapoda, Isopoda, Thecostraca, and others. This dataset represents the most extensive DNA barcode library of the Crustacea in terms of species number to date. By using the Barcode of Life Data Systems (BOLD), unique BINs were identified for 198 (96.6%) of the analyzed species. Six species were characterized by two BINs (2.9%), and three BINs were found for the amphipod species Gammarus salinus Spooner, 1947 (0.4%). Intraspecific distances with values higher than 2.2% were revealed for 13 species (6.3%). Exceptionally high distances of up to 14.87% between two distinct but monophyletic clusters were found for the parasitic copepod Caligus elongatus Nordmann, 1832, supporting the results of previous studies that indicated the existence of an overlooked sea louse species. In contrast to these high distances, haplotype-sharing was observed for two decapod spider crab species, Macropodia parva Van Noort & Adema, 1985 and Macropodia rostrata (Linnaeus, 1761), underlining the need for a taxonomic revision of both species. Summarizing the results, our study confirms the application of DNA barcodes as highly effective identification system for the analyzed marine crustaceans of the North Sea and represents an important milestone for modern biodiversity assessment studies using barcode sequence

    Changes in Human Fecal Microbiota Due to Chemotherapy Analyzed by TaqMan-PCR, 454 Sequencing and PCR-DGGE Fingerprinting

    Get PDF
    BACKGROUND: We investigated whether chemotherapy with the presence or absence of antibiotics against different kinds of cancer changed the gastrointestinal microbiota. METHODOLOGY/PRINCIPAL FINDINGS: Feces of 17 ambulant patients receiving chemotherapy with or without concomitant antibiotics were analyzed before and after the chemotherapy cycle at four time points in comparison to 17 gender-, age- and lifestyle-matched healthy controls. We targeted 16S rRNA genes of all bacteria, Bacteroides, bifidobacteria, Clostridium cluster IV and XIVa as well as C. difficile with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting and high-throughput sequencing. After a significant drop in the abundance of microbiota (p = 0.037) following a single treatment the microbiota recovered within a few days. The chemotherapeutical treatment marginally affected the Bacteroides while the Clostridium cluster IV and XIVa were significantly more sensitive to chemotherapy and antibiotic treatment. DGGE fingerprinting showed decreased diversity of Clostridium cluster IV and XIVa in response to chemotherapy with cluster IV diversity being particularly affected by antibiotics. The occurrence of C. difficile in three out of seventeen subjects was accompanied by a decrease in the genera Bifidobacterium, Lactobacillus, Veillonella and Faecalibacterium prausnitzii. Enterococcus faecium increased following chemotherapy. CONCLUSIONS/SIGNIFICANCE: Despite high individual variations, these results suggest that the observed changes in the human gut microbiota may favor colonization with C. difficile and Enterococcus faecium. Perturbed microbiota may be a target for specific mitigation with safe pre- and probiotics

    Early cancer of the gastric remnant.

    Full text link

    Syntheses and X-ray Crystal Structures of α- and β-[XeO<sub>2</sub>F][SbF<sub>6</sub>], [XeO<sub>2</sub>F][AsF<sub>6</sub>], [FO<sub>2</sub>XeFXeO<sub>2</sub>F][AsF<sub>6</sub>], and [XeF<sub>5</sub>][SbF<sub>6</sub>]·XeOF<sub>4</sub> and Computational Studies of the XeO<sub>2</sub>F<sup>+</sup> and FO<sub>2</sub>XeFXeO<sub>2</sub>F<sup>+</sup> Cations and Related Species

    No full text
    Reactions of XeO2F2 with the strong fluoride ion acceptors, AsF5 and SbF5, in anhydrous HF solvent give rise to α- and β-[XeO2F][SbF6], [XeO2F][AsF6], and [FO2XeFXeO2F][AsF6]. The crystal structures of α-[XeO2F][SbF6] and [XeO2F][AsF6] consist of trigonal-pyramidal XeO2F+ cations, which are consistent with an AXY2E VSEPR arrangement, and distorted octahedral MF6- (M = As, Sb) anions. The β-phase of [XeO2F][SbF6] is a tetramer in which the xenon atoms of four XeO2F+ cations and the antimony atoms of four SbF6- anions are positioned at alternate corners of a cube. The FO2XeFXeO2F+ cations of [FO2XeFXeO2F][AsF6] are comprised of two XeO2F units that are bridged by a fluorine atom, providing a bent Xe- - -F- - -Xe arrangement. The angle subtended by the bridging fluorine atom, a xenon atom, and the terminal fluorine atom of the XeO2F group is bent toward the valence electron lone-pair domain on xenon, so that each F- - -XeO2F moiety resembles the AX2Y2E arrangement and geometry of the parent XeO2F2 molecule. Reaction of XeF6 with [H3O][SbF6] in a 1:2 molar ratio in anhydrous HF predominantly yielded [XeF5][SbF6]·XeOF4 as well as [XeO2F][Sb2F11]. The crystal structure of the former salt was also determined. The energy-minimized, gas-phase MP2 geometries for the XeO2F+ and FO2XeFXeO2F+ cations are compared with the experimental and calculated geometries of the related species IO2F, TeO2F-, XeO2(OTeF5)+, XeO2F2, and XeO2(OTeF5)2. The bonding in these species has been described by natural bond orbital and electron localization function analyses. The standard enthalpies and Gibbs free energies for reactions leading to XeO2F+ and FO2XeFXeO2F+ salts from MF5 (M = As, Sb) and XeO2F2 were obtained from Born−Haber cycles and are mildly exothermic and positive, respectively. When the reactions are carried out in anhydrous HF at low temperatures, the salts are readily formed and crystallized from the reaction medium. With the exception of [XeO2F][AsF6], the XeO2F+ and FO2XeFXeO2F+ salts are kinetically stable toward dissociation to XeO2F2 and MF5 at room temperature. The salt, [XeO2F][AsF6], readily dissociates to [FO2XeFXeO2F][AsF6] and AsF5 under dynamic vacuum at 0 °C. The decompositions of XeO2F+ salts to the corresponding XeF+ salts and O2 are exothermic and spontaneous but slow at room temperature

    Syntheses and X-ray Crystal Structures of α- and β-[XeO<sub>2</sub>F][SbF<sub>6</sub>], [XeO<sub>2</sub>F][AsF<sub>6</sub>], [FO<sub>2</sub>XeFXeO<sub>2</sub>F][AsF<sub>6</sub>], and [XeF<sub>5</sub>][SbF<sub>6</sub>]·XeOF<sub>4</sub> and Computational Studies of the XeO<sub>2</sub>F<sup>+</sup> and FO<sub>2</sub>XeFXeO<sub>2</sub>F<sup>+</sup> Cations and Related Species

    No full text
    Reactions of XeO2F2 with the strong fluoride ion acceptors, AsF5 and SbF5, in anhydrous HF solvent give rise to α- and β-[XeO2F][SbF6], [XeO2F][AsF6], and [FO2XeFXeO2F][AsF6]. The crystal structures of α-[XeO2F][SbF6] and [XeO2F][AsF6] consist of trigonal-pyramidal XeO2F+ cations, which are consistent with an AXY2E VSEPR arrangement, and distorted octahedral MF6- (M = As, Sb) anions. The β-phase of [XeO2F][SbF6] is a tetramer in which the xenon atoms of four XeO2F+ cations and the antimony atoms of four SbF6- anions are positioned at alternate corners of a cube. The FO2XeFXeO2F+ cations of [FO2XeFXeO2F][AsF6] are comprised of two XeO2F units that are bridged by a fluorine atom, providing a bent Xe- - -F- - -Xe arrangement. The angle subtended by the bridging fluorine atom, a xenon atom, and the terminal fluorine atom of the XeO2F group is bent toward the valence electron lone-pair domain on xenon, so that each F- - -XeO2F moiety resembles the AX2Y2E arrangement and geometry of the parent XeO2F2 molecule. Reaction of XeF6 with [H3O][SbF6] in a 1:2 molar ratio in anhydrous HF predominantly yielded [XeF5][SbF6]·XeOF4 as well as [XeO2F][Sb2F11]. The crystal structure of the former salt was also determined. The energy-minimized, gas-phase MP2 geometries for the XeO2F+ and FO2XeFXeO2F+ cations are compared with the experimental and calculated geometries of the related species IO2F, TeO2F-, XeO2(OTeF5)+, XeO2F2, and XeO2(OTeF5)2. The bonding in these species has been described by natural bond orbital and electron localization function analyses. The standard enthalpies and Gibbs free energies for reactions leading to XeO2F+ and FO2XeFXeO2F+ salts from MF5 (M = As, Sb) and XeO2F2 were obtained from Born−Haber cycles and are mildly exothermic and positive, respectively. When the reactions are carried out in anhydrous HF at low temperatures, the salts are readily formed and crystallized from the reaction medium. With the exception of [XeO2F][AsF6], the XeO2F+ and FO2XeFXeO2F+ salts are kinetically stable toward dissociation to XeO2F2 and MF5 at room temperature. The salt, [XeO2F][AsF6], readily dissociates to [FO2XeFXeO2F][AsF6] and AsF5 under dynamic vacuum at 0 °C. The decompositions of XeO2F+ salts to the corresponding XeF+ salts and O2 are exothermic and spontaneous but slow at room temperature
    corecore