18 research outputs found

    Production primaire et relations trophiques chez les invertébrés des communautés halophiles de Camargue

    Get PDF
    Les biomasses vĂ©gĂ©tales mesurĂ©es dans les zones Ă©mergĂ©es de la sansouire camarguaise sont relativement Ă©levĂ©es dans le Sali cornietum fruticosae, de l’ordre de 3 kg de matiĂšre sĂšche par m2 alors qu’elles n’atteignent que 0,4 kg/m2 dans Y Arthrocnemetum. La production primaire annuelle du S. fruticosae se situe entre 0,5 et 1 kg de matiĂšre sĂšche par m2, soit du mĂȘme ordre que celle d’un peuplement Ă  Quercus ilex Ă©tudiĂ© sous le mĂȘme climat. Elle est rĂ©alisĂ©e pour l’essentiel en trois mois, de mai Ă  juillet. Ensuite l’abaissement de la nappe aquifĂšre, consĂ©quence de la forte Ă©vapo ration estivale, se traduit par une chute du potentiel hydrique et par une rĂ©gulation efficace de la transpiration. L’étude des niveaux de consommation chez les InvertĂ©brĂ©s terrestres montre, qu’en dehors de pĂ©riodes exceptionnelles de pullulation des chenilles de deux espĂšces de microlĂ©pidoptĂšres, la forte production primaire de S. fruticosae n’est pas utilisĂ©e directement. Les dĂ©tritivores (ColĂ©optĂšres, Collemboles) et les dĂ©composeurs jouent un rĂŽle essentiel. Dans les zones Ă  submersion temporaire l’abondance des dĂ©bris vĂ©gĂ©taux dessĂ©chĂ©s pendant l’étĂ© qui s’ajoute Ă  la production alguale pendant l’inondation hivernale permet la pullulation des CrustacĂ©s planctoniques, en particulier celle des CopĂ©podes Cala nides filtreurs dont plusieurs espĂšces de tailles diffĂ©rentes peuvent prolifĂ©rer ensemble. Ces populations de CrustacĂ©s ainsi que les larves aquatiques d’insectes procurent lors de l’assĂšchement une nourriture abondante pour la communautĂ© ripicole oĂč les ColĂ©optĂšres Carabiques sont bien reprĂ©sentĂ©s.The above-ground plant biomass in the emerged zones of the Camargue “ sansouire ” is relatively high in Salicornietum fruticosae, about 3 kg of dry matter per square metre, whereas it only reaches 0.4 kg/m2 in Arthrocnemetum. The above-ground annual primary production of Salicornietum fruticosae ranges from 0.5 to 1.0 kg/m2/year, which is approximately equal to that of Quercus ilex stands in the same climate. Production essentially takes place during a three month period from May to July. Afterwards the lowering of the water table resulting from the high level of evaporation during the summer is marked by a decrease in water potential and by an efficient regulation of transpiration. Aside from exceptional outbreaks of caterpillars of two species of microlepidoptera, the primary production of Salicornia is not used by primary consumers, but by detritus feeders (beetles and springt ails) and decomposers. In the areas temporarily flooded, algal production during winter flooding and the accumulation of dried plant debris in summer, allow planktonic Crustacea, Calanoid Copepods particularly, to reach high population densities. These Copepods, together with the larvae of aquatic insects, provide an abundant food for Carabid beetles and other riparian invertebrates when water recedes and the “ sansouire ” dries out

    Impact de produits phytopharmaceutiques sur les microarthropodes du sol en culture de maïs irrigué: approche fonctionnelle par la méthode des sacs de litiÚre

    No full text
    International audienceThe effects of two herbicides (atrazine and alachlore) and two insecticides (fipronil and carbofuran) were evaluated on soil mesofauna and organic matter decomposition, in a maize field with normal culture conditions, using the litter-bag method. The litter-bag method was discussed and considered to be adapted for this type of in situ study, especially under normal culture conditions, where it is difficult to find real control plots. However its adaptability is conditioned by some utilisation factors. The litter-bag colonization and modifications of this colonization by phytopharmaceuticals were interpreted using functional groups classification. Except for alachlore, herbicides appeared to have no differentiated effect on mesofauna. Accordingly, fipronil significantly affects the dynamics of bag colonization by selected groups belonging to soil mesofauna. Key words: Phytopharmaceuticals, maize, soil microarthropods, functional groups, trophic relationships, litter-bagsImpact de produits phytopharmaceutiques sur les microarthropodes du sol en culture de maĂŻs irriguĂ©: approche fonctionnelle par la mĂ©thode des sacs de litiĂšre. Can. J. Soil Sci. 80: 237-249. Les effets de deux herbicides (atrazine et alachlore) et deux insecticides (fipronil et carbofuran) ont Ă©tĂ© Ă©valuĂ©s sur la mĂ©sofaune du sol et la dĂ©composition de la matiĂšre organique, dans un champ de maĂŻs en conditions rĂ©elles de culture, en utilisant la mĂ©thode des sacs de litiĂšre. La mĂ©thode des sacs de litiĂšre est discutĂ©e. Elle a Ă©tĂ© jugĂ©e pertinente pour les Ă©tudes in situ, oĂč le problĂšme le plus dĂ©licat concerne le choix de tĂ©moins permettant d'apprĂ©cier l'impact rĂ©el des produits phytopharmaceutiques, Ă  condition de respecter certains impĂ©ratifs d'utilisation. L'Ă©tude de diffĂ©rents groupes taxonomiques rassemblĂ©s en groupes fonctionnels permet d'interprĂ©ter la dynamique de colonisation des sacs par les microarthropodes, celle-ci pouvant ĂȘtre ou non modifiĂ©e par les produits phytopharmaceutiques utilisĂ©s. Dans cette Ă©tude, concernant les herbicides, seul l'alachlore semble exercer une action diffĂ©renciĂ©e sur la colonisation des sacs par la mĂ©sofaune. De mĂȘme, l'insecticide fipronil agit de façon significative sur la dynamique de colonisation des sacs par certains groupes appartenant Ă  la mĂ©sofaune du sol

    Substrate and food effects on biotic potentialities of Encarsia formosa (Hym., Aphelinidae)

    No full text
    International audienc

    Réponses des végétaux et des invertébrés au régime hydrique et aux variations de la salinité dans les communautés halophiles de Camargue

    No full text
    Les rĂ©ponses apportĂ©es par plusieurs espĂšces vĂ©gĂ©tales et animales aux variations de la salinitĂ© et Ă  l’alternance de pĂ©riodes d’inondation et d’assĂšchement dans la sansouire camarguaise montre des convergences. L’espĂšce collective Salicornia herbacea comprend trois taxons, qui correspondent Ă  des situations Ă©cologiques diffĂ©rentes. Les deux premiers possĂšdent un seul type de graine dont la germination s’effectue en automne pour S. brachystachya, au printemps aprĂšs levĂ©e de la dormance par le froid pour S. emerici. Au contraire, S. patula possĂšde deux types de graines : les graines centrales non dormantes qui germent Ă  l’automne, les graines latĂ©rales dormantes qui germent au printemps. Les Ɠufs des CopĂ©podes Calanides possĂšdent Ă©galement un polymorphisme morphologique et physiologique. Les femelles pondent des Ɠufs Ă  dĂ©veloppement immĂ©diat pendant l’hiver, des Ɠufs de rĂ©sistance dont l’éclosion est soumise Ă  la levĂ©e d’une diapause au printemps chez trois espĂšces bivoltines adaptĂ©es respectivement Ă  des basses, moyennes et fortes salinitĂ©s. Au contraire deux espĂšces univoltines pondent un seul type d’Ɠufs Ă  diapause. L’enfouissement suivi de diapause chez les CopĂ©podites IV des Cyclopides, suivi de quiescence chez les femelles de l’Harpacticide Cletocamptus retrogressus leur permet de survivre Ă  l’assĂšchement et Ă  la sursalure. Le Collembole Isotomurus palustris se maintient grĂące Ă  des Ɠufs de rĂ©sistance. La dĂ©tĂ©rioration du milieu entraĂźne Ă©galement l’apparition d’individus Ă©comorphiques diffĂ©rents du type. L’étude du polymorphisme enzymatique a permis l’individualisation de deux espĂšces jumelles A et B chez le Culicide Aedes dĂ©tritus. Ces deux taxons isolĂ©s sexuellement sont identiques au plan morphologique. L’autogĂ©nĂšse ne se manifeste que dans l’élĂ©ment A. II existe entre eux une certaine sĂ©grĂ©gation gĂ©ographique et temporelle (A domine en Basse-Camargue, B en Haute-Camargue, A domine en hiver, B au printemps).Several plant and animal species react similarly to variations in salinity and to alternate periods of flooding and drying in the “ sansouire The collective species Salicornia herbacea consists of three taxa which correspond to different environmental situations. The first two have a single type of seed which germinates in autumn for S. brachystachya, and in the spring at the end of the dormant period for S. emerici. On the other hand, S. patula has two types of seeds : non-dormant central seeds which germinate in autumn, and dormant lateral seeds germinating in spring. The eggs of Calanoid Copepods also show a morphological and a physiological polymorphism. During the winter, the females lay eggs which develop immediately. Three bivoltine species respectively adapted to low, average and high salinities, lay resistant eggs as well, which hatch at the end of a spring diapause. In contrast, two univoltine species lay a single type of egg which undergoes diapause. Burying in the mud, followed by diapause at the copepodite IV stage in Cyclopidae, and by quiescence in females of the Harpacticoid CAetocamptus retrogressus, allows the individuals to survive drying and hypersalinity. The Collembola Isotomurus palustris survives thanks to its resistant eggs. The deterioration of the environment also entails the apparition of ecomorphic individuals of a different type. The study of enzymatic polymorphism has also permitted the differentiation of two sibling species (A and B) of the mosquito Aedes detritus. These two taxa, sexually isolated, are morpho logically identical. However, autogenesis occurs only in spe cies A. There is also some degree of geographic and temporal segregation between the two sibling species : A is more abundant in the “ lower ” Camargue and B in the “ upper ” ; A is more often found in winter and B in spring

    Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling

    No full text
    International audienceA broad and diversified group of compounds, secondary metabolites, are known to govern species interactions in ecosystems. Recent studies have shown that secondary metabolites can also play a major role in ecosystem processes, such as plant succession or in the process of litter decomposition, by governing the interplay between plant matter and soil organisms. We reviewed the ecological role of the three main classes of secondary metabolites and the methodological challenges and novel avenues for their study. We highlight emerging general patterns of the impacts of secondary metabolites on decomposer communities and litter decomposition and argue for the consideration of secondary compounds as key drivers of soil functioning and ecosystem functioning.Synthesis. Gaining a greater understanding of plant-soil organisms relationships and underlying mechanisms, including the role of secondary metabolites, could improve our ability to understand ecosystem processes. We outline some promising directions for future research that would stimulate studies aiming to understand the interactions of secondary metabolites across a range of spatio-temporal scales. Detailed mechanistic knowledge could help us to develop models for the process of litter decomposition and nutrient cycling in ecosystems and help us to predict future impacts of global changes on ecosystem functioning

    Water availability rather than temperature control soil fauna community structure and prey‐predator interactions

    No full text
    International audience1. The ongoing climate change may strongly impact soil biodiversity with cascading effects on the processes they drive. Thus, it is of prime interest to improve our knowledge about responses by soil organisms such as collembolans to expected shifts in environmental conditions by considering communities comprising both detritivores and predators.2. The aim of the present study was to evaluate how simulated climate change and predation under laboratory conditions alter a collembolan community.3. To infer the impact of climate change, we applied a decreased level of soil moisture (60% vs. 30% soil water holding capacity) and an increasing air temperature (15 °C vs. 25 °C) to a collembolan community constituted by four species (Folsomia candida, Protaphorura fimata, Proisotoma minuta and Mesaphorura macrochaeta) exhibiting distinct functional traits, e.g. body size and furca presence, in presence or absence of a predatory gamasid Acari (Stratiolaelaps scimitus) during two months in a microcosm experiment.4. We observed that decreasing soil moisture altered the collembolan community with species‐specific responses. Interaction between soil moisture, temperature and predation indicates that low soil moisture reduced total collembolan abundance especially i) by suppressing the positive effect of increasing temperature and ii) by increasing the predatory control on collembolan abundance.5. These results highlight that soil moisture is the major driver of Collembola community and by consequence, a shift in climatic parameters with the ongoing climate change should strongly modify the Collembola community structure and the predator‐prey interaction. Our findings are highly important since a strengthening of predation impact on Collembola prey could have major consequences on the whole soil food web being able to lead to a slowdown of key ecosystem processes they drive (e.g., litter decomposition and nutrient recycling). Finally, our study promotes the need to study more complex systems considering distinct soil‐dwelling species, their functional traits and their trophic interactions to better predict the ecosystem responses to the ongoing climate change
    corecore