350 research outputs found

    Doubly Perfect Nonlinear Boolean Permutations

    Full text link
    Due to implementation constraints the XOR operation is widely used in order to combine plaintext and key bit-strings in secret-key block ciphers. This choice directly induces the classical version of the differential attack by the use of XOR-kind differences. While very natural, there are many alternatives to the XOR. Each of them inducing a new form for its corresponding differential attack (using the appropriate notion of difference) and therefore block-ciphers need to use S-boxes that are resistant against these nonstandard differential cryptanalysis. In this contribution we study the functions that offer the best resistance against a differential attack based on a finite field multiplication. We also show that in some particular cases, there are robust permutations which offers the best resistant against both multiplication and exponentiation base differential attacks. We call them doubly perfect nonlinear permutations

    The actual impedance of non-reflecting boundary conditions : implications for the computation of resonators

    Get PDF
    Non-reflecting boundary conditions are essential elements in the computation of many compressible flows: such simulations are very sensitive to the treatment of acoustic waves at boundaries. Non-reflecting conditions allow acoustic waves to propagate through boundaries with zero or small levels of reflection into the domain. However, perfectly non-reflecting conditions must be avoided because they can lead to ill-posed problems for the mean flow. Various methods have been proposed to construct boundary conditions which can be sufficiently non-reflecting for the acoustic field while still making the mean-flow problem well posed. This paper analyses a widely-used technique for non-reflecting outlets (Rudy and Strikwerda, Poinsot and Lele). It shows that the correction introduced by these authors can lead to large reflection levels and non-physical resonant behaviors. A simple scaling is proposed to evaluate the relaxation coefficient used in theses methods for a non-reflecting outlet. The proposed scaling is tested for simple cases (ducts) both theoretically and numerically

    Triple flame structure and diffusion flame stabilization

    Get PDF
    The stabilization of diffusion ñames is studied using asymptotic techniques and numerical tools. The configuration studied corresponda to parallel streams of cold oxidizer and fuel initially separated by a splitter píate. It is shown that stabilization of a diffusion flame may only occur in this situation by two processes. First, the flame may be stabilized behind the flame holder in the wake of the splitter píate. For this case, numerical simulations confirm scalings previously predicted by asymptotic analysis. Second, the flame may be lifted. In this case a triple flame is found at longer distanees downstream of the flame holder. The structure and propagation speed of this flame are studied by using an actively controlled numerical technique in which the triple flame is tracked in its own reference frame. It is then possible to investigate the triple flame structure and velocity. It is shown, as suggested from asymptotic analysis, that heat reléase may induce displacement speeds of the triple flame larger than the laminar flame speed corresponding to the stoichiometric conditions prevailing in the mixture approaching the triple flame. In addition to studying the characteristics of triple flames in a uniform flow, their re-sistance to turbulence is investigated by subjecting triple flames to different vortical configurations

    Statistics on Graphs, Exponential Formula and Combinatorial Physics

    Full text link
    The concern of this paper is a famous combinatorial formula known under the name "exponential formula". It occurs quite naturally in many contexts (physics, mathematics, computer science). Roughly speaking, it expresses that the exponential generating function of a whole structure is equal to the exponential of those of connected substructures. Keeping this descriptive statement as a guideline, we develop a general framework to handle many different situations in which the exponential formula can be applied

    Using LES to Study Reacting Flows and Instabilities in Annular Combustion Chambers

    Get PDF
    Great prominence is put on the design of aeronautical gas turbines due to increasingly stringent regulations and the need to tackle rising fuel prices. This drive towards innovation has resulted sometimes in new concepts being prone to combustion instabilities. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber, which remained out of reach until very recently and the development of massively parallel computers. Since one of the most limiting factors in performing Large Eddy Simulation (LES) of real combustors is estimating the adequate grid, the effects of mesh resolution are investigated by computing full annular LES of a realistic helicopter combustion chamber on three grids, respectively made of 38, 93 and 336 million elements. Results are compared in terms of mean and fluctuating fields. LES captures self-established azimuthal modes. The presence and structure of the modes is discussed. This study therefore highlights the potential of LES for studying combustion instabilities in annular gas turbine combustors

    Temperature and pollution control in flames

    Get PDF
    We apply control theory for PDEs to flame control. The targeted flame is calculated with complex chemistry. For pollutant control in flames we study both the control of temperature distribution in the flame and flame length at given fuel rate in the flow. Approximate state and sensitivity evaluations as well as mesh adaptation are used to keep the complexity as low as possible and get mesh independent results. In addition, a new recursive semi-deterministic global optimization approach is tested

    Lie point symmetries and first integrals: the Kowalevsky top

    Full text link
    We show how the Lie group analysis method can be used in order to obtain first integrals of any system of ordinary differential equations. The method of reduction/increase of order developed by Nucci (J. Math. Phys. 37, 1772-1775 (1996)) is essential. Noether's theorem is neither necessary nor considered. The most striking example we present is the relationship between Lie group analysis and the famous first integral of the Kowalevski top.Comment: 23 page
    corecore