7,987 research outputs found

    Nonthermal THz to TeV Emission from Stellar Wind Shocks in the Galactic Center

    Full text link
    The central parsec of the Galaxy contains dozens of massive stars with a cumulative mass loss rate of ~ 10^{-3} solar masses per year. Shocks among these stellar winds produce the hot plasma that pervades the central part of the galaxy. We argue that these stellar wind shocks also efficiently accelerate electrons and protons to relativistic energies. The relativistic electrons inverse Compton scatter the ambient ultraviolet and far infrared radiation field, producing high energy gamma-rays with a roughly constant luminosity from \~ GeV to ~ 10 TeV. This can account for the TeV source seen by HESS in the Galactic Center. Our model predicts a GLAST counterpart to the HESS source with a luminosity of ~ 10^{35} ergs/s and cooling break at ~ 4 GeV. Synchrotron radiation from the same relativistic electrons should produce detectable emission at lower energies, with a surface brightness ~ 10^{32} B^2_{-3} ergs/s/arcsec^2 from ~ THz to ~ keV, where B_{-3} is the magnetic field strength in units of mG. The observed level of diffuse thermal X-ray emission in the central parsec requires B < 300 micro-G in our models. Future detection of the diffuse synchrotron background in the central parsec can directly constrain the magnetic field strength, providing an important boundary condition for models of accretion onto Sgr A*.Comment: submitted to ApJ Letter

    Thin-disk laser pump schemes for large number of passes and moderate pump source quality

    Full text link
    Novel thin-disk laser pump layouts are proposed yielding an increased number of passes for a given pump module size and pump source quality. These novel layouts result from a general scheme which bases on merging two simpler pump optics arrangements. Some peculiar examples can be realized by adapting standard commercially available pump optics simply by intro ducing an additional mirror-pair. More pump passes yield better efficiency, opening the way for usage of active materials with low absorption. In a standard multi-pass pump design, scaling of the number of beam passes brings ab out an increase of the overall size of the optical arrangement or an increase of the pump source quality requirements. Such increases are minimized in our scheme, making them eligible for industrial applicationsComment: 16 pages, 9 figure

    DNA loop statistics and torsional modulus

    Full text link
    The modelling of DNA mechanics under external constraints is discussed. Two analytical models are widely known, but disagree for instance on the value of the torsional modulus. The origin of this embarassing situation is located in the concept of writhe. This letter presents a unified model for DNA establishing a relation between the different approaches. I show that the writhe created by the loops of DNA is at the origin of the discrepancy. To take this into account, I propose a new treatment of loop statistics based on numerical simulations using the most general formula for the writhe, and on analytic calculations with only one fit parameter. One can then compute the value of the torsional modulus of DNA without the need of any cut-off.Comment: 8 pages, 1 figure. Accepted by Europhysics Letter

    Spectral Energy Distributions of Gamma Ray Bursts Energized by External Shocks

    Get PDF
    Sari, Piran, and Narayan have derived analytic formulas to model the spectra from gamma-ray burst blast waves that are energized by sweeping up material from the surrounding medium. We extend these expressions to apply to general radiative regimes and to include the effects of synchrotron self-absorption. Electron energy losses due to the synchrotron self-Compton process are also treated in a very approximate way. The calculated spectra are compared with detailed numerical simulation results. We find that the spectral and temporal breaks from the detailed numerical simulation are much smoother than the analytic formulas imply, and that the discrepancies between the analytic and numerical results are greatest near the breaks and endpoints of the synchrotron spectra. The expressions are most accurate (within a factor of ~ 3) in the optical/X-ray regime during the afterglow phase, and are more accurate when epsilon_e, the fraction of swept-up particle energy that is transferred to the electrons, is <~ 0.1. The analytic results provide at best order-of-magnitude accuracy in the self-absorbed radio/infrared regime, and give poor fits to the self-Compton spectra due to complications from Klein-Nishina effects and photon-photon opacity.Comment: 16 pages, 7 figures, ApJ, in press, 537, July 1, 2000. Minor changes in response to referee report, corrected figure

    Enhanced transmission versus localization of a light pulse by a subwavelength metal slit: Can the pulse have both characteristics?

    Full text link
    The existence of resonant enhanced transmission and collimation of light waves by subwavelength slits in metal films [for example, see T.W. Ebbesen et al., Nature (London) 391, 667 (1998) and H.J. Lezec et al., Science, 297, 820 (2002)] leads to the basic question: Can a light be enhanced and simultaneously localized in space and time by a subwavelength slit? To address this question, the spatial distribution of the energy flux of an ultrashort (femtosecond) wave-packet diffracted by a subwavelength (nanometer-size) slit was analyzed by using the conventional approach based on the Neerhoff and Mur solution of Maxwell's equations. The results show that a light can be enhanced by orders of magnitude and simultaneously localized in the near-field diffraction zone at the nm- and fs-scales. Possible applications in nanophotonics are discussed.Comment: 5 figure

    On the formation and decay of a molecular ultracold plasma

    Full text link
    Double-resonant photoexcitation of nitric oxide in a molecular beam creates a dense ensemble of 50f(2)50f(2) Rydberg states, which evolves to form a plasma of free electrons trapped in the potential well of an NO+^+ spacecharge. The plasma travels at the velocity of the molecular beam, and, on passing through a grounded grid, yields an electron time-of-flight signal that gauges the plasma size and quantity of trapped electrons. This plasma expands at a rate that fits with an electron temperature as low as 5 K, colder that typically observed for atomic ultracold plasmas. The recombination of molecular NO+^+ cations with electrons forms neutral molecules excited by more than twice the energy of the NO chemical bond, and the question arises whether neutral fragmentation plays a role in shaping the redistribution of energy and particle density that directs the short-time evolution from Rydberg gas to plasma. To explore this question, we adapt a coupled rate-equations model established for atomic ultracold plasmas to describe the energy-grained avalanche of electron-Rydberg and electron-ion collisions in our system. Adding channels of Rydberg predissociation and two-body, electron- cation dissociative recombination to the atomic formalism, we investigate the kinetics by which this relaxation distributes particle density and energy over Rydberg states, free electrons and neutral fragments. The results of this investigation suggest some mechanisms by which molecular fragmentation channels can affect the state of the plasma

    Compact 20-pass thin-disk amplifier insensitive to thermal lensing

    Full text link
    We present a multi-pass amplifier which passively compensates for distortions of the spherical phase front occurring in the active medium. The design is based on the Fourier transform propagation which makes the output beam parameters insensitive to variation of thermal lens effects in the active medium. The realized system allows for 20 reflections on the active medium and delivers a small signal gain of 30 with M2^2 = 1.16. Its novel geometry combining Fourier transform propagations with 4f-imaging stages as well as a compact array of adjustable mirrors allows for a layout with a footprint of 400 mm x 1000 mm.Comment: 7 pages, 6 figure

    Nonthermal Emission from the Arches Cluster (G0.121+0.017) and the Origin of Îł\gamma-ray Emission from 3EG J1746-2851

    Full text link
    High resolution VLA observations of the Arches cluster near the Galactic center show evidence of continuum emission at λ\lambda3.6, 6, 20 and 90cm. The continuum emission at λ\lambda90cm is particularly striking because thermal sources generally become optically thick at longer wavelengths and fall off in brightness whereas non-thermal sources increase in brightness. It is argued that the radio emission from this unique source has compact and diffuse components produced by thermal and nonthermal processes, respectively. Compact sources within the cluster arise from stellar winds of mass-losing stars (Lang, Goss & Rodriguez 2001a) whereas diffuse emission is likely to be due to colliding wind shocks of the cluster flow generating relativistic particles due to diffuse shock acceleration. We also discuss the possibility that γ\gamma-ray emission from 3EG J1746--2851, located within 3.3′' of the Arches cluster, results from the inverse Compton scattering of the radiation field of the cluster.Comment: 15 pages, four figures, ApJL (in press

    Tackling the Monday Morning Quarterback: Applications of Hindsight Bias in Decision-Making Settings

    Get PDF
    Extant research has focused largely on what causes hindsight distortion. In contrast, this work examines applied aspects related to the bias in decision-making environments. A conceptual framework is provided and recent real–world examples are presented to outline how decision makers—and those who observe them—show hindsight effects. Then, both negative and positive consequences of the bias are outlined. Strategies are presented to reduce negative effects that occur when decision makers show hindsight distortion. Finally, because it is often not possible to avoid or to correct others\u27 hindsight–tainted evaluations, suggestions for coping with the bias are discussed
    • …
    corecore