8,556 research outputs found

    Nonthermal THz to TeV Emission from Stellar Wind Shocks in the Galactic Center

    Full text link
    The central parsec of the Galaxy contains dozens of massive stars with a cumulative mass loss rate of ~ 10^{-3} solar masses per year. Shocks among these stellar winds produce the hot plasma that pervades the central part of the galaxy. We argue that these stellar wind shocks also efficiently accelerate electrons and protons to relativistic energies. The relativistic electrons inverse Compton scatter the ambient ultraviolet and far infrared radiation field, producing high energy gamma-rays with a roughly constant luminosity from \~ GeV to ~ 10 TeV. This can account for the TeV source seen by HESS in the Galactic Center. Our model predicts a GLAST counterpart to the HESS source with a luminosity of ~ 10^{35} ergs/s and cooling break at ~ 4 GeV. Synchrotron radiation from the same relativistic electrons should produce detectable emission at lower energies, with a surface brightness ~ 10^{32} B^2_{-3} ergs/s/arcsec^2 from ~ THz to ~ keV, where B_{-3} is the magnetic field strength in units of mG. The observed level of diffuse thermal X-ray emission in the central parsec requires B < 300 micro-G in our models. Future detection of the diffuse synchrotron background in the central parsec can directly constrain the magnetic field strength, providing an important boundary condition for models of accretion onto Sgr A*.Comment: submitted to ApJ Letter

    Many-body theory of excitation dynamics in an ultracold Rydberg gas

    Full text link
    We develop a theoretical approach for the dynamics of Rydberg excitations in ultracold gases, with a realistically large number of atoms. We rely on the reduction of the single-atom Bloch equations to rate equations, which is possible under various experimentally relevant conditions. Here, we explicitly refer to a two-step excitation-scheme. We discuss the conditions under which our approach is valid by comparing the results with the solution of the exact quantum master equation for two interacting atoms. Concerning the emergence of an excitation blockade in a Rydberg gas, our results are in qualitative agreement with experiment. Possible sources of quantitative discrepancy are carefully examined. Based on the two-step excitation scheme, we predict the occurrence of an antiblockade effect and propose possible ways to detect this excitation enhancement experimentally in an optical lattice as well as in the gas phase.Comment: 12 pages, 8 figure

    Correlations of Rydberg excitations in an ultra-cold gas after an echo sequence

    Get PDF
    We show that Rydberg states in an ultra-cold gas can be excited with strongly preferred nearest-neighbor distance if densities are well below saturation. The scheme makes use of an echo sequence in which the first half of a laser pulse excites Rydberg states while the second half returns atoms to the ground state, as in the experiment of Raitzsch et al. [Phys. Rev. Lett. 100 (2008) 013002]. Near to the end of the echo sequence, almost any remaining Rydberg atom is separated from its next-neighbor Rydberg atom by a distance slightly larger than the instantaneous blockade radius half-way through the pulse. These correlations lead to large deviations of the atom counting statistics from a Poissonian distribution. Our results are based on the exact quantum evolution of samples with small numbers of atoms. We finally demonstrate the utility of the omega-expansion for the approximate description of correlation dynamics through an echo sequence.Comment: 8 pages, 6 figure

    The effect of the displacement damage on the Charge Collection Efficiency in Silicon Drift Detectors for the LOFT satellite

    Get PDF
    The technology of Silicon Drift Detectors (SDDs) has been selected for the two instruments aboard the Large Observatory For X-ray Timing (LOFT) space mission. LOFT underwent a three year long assessment phase as candidate for the M3 launch opportunity within the "Cosmic Vision 2015 -- 2025" long-term science plan of the European Space Agency. During the LOFT assessment phase, we studied the displacement damage produced in the SDDs by the protons trapped in the Earth's magnetosphere. In a previous paper we discussed the effects of the Non Ionising Energy Losses from protons on the SDD leakage current. In this paper we report the measurement of the variation of Charge Collection Efficiency produced by displacement damage caused by protons and the comparison with the expected damage in orbit.Comment: 17 pages, 7 figures. Accepted for publication by Journal of Instrumentatio

    New flow relaxation mechanism explains scour fields at the end of submarine channels

    Get PDF
    Particle-laden gravity flows, called turbidity currents, flow through river-like channels across the ocean floor. These submarine channels funnel sediment, nutrients, pollutants and organic carbon into ocean basins and can extend for over 1000’s of kilometers. Upon reaching the end of these channels, flows lose their confinement, decelerate, and deposit their sediment load; this is what we read in textbooks. However, sea floor observations have shown the opposite: turbidity currents tend to erode the seafloor upon losing confinement. Here we use a state-of-the-art scaling method to produce the first experimental turbidity currents that erode upon leaving a channel. The experiments reveal a novel flow mechanism, here called flow relaxation, that explains this erosion. Flow relaxation is rapid flow deformation resulting from the loss of confinement, which enhances basal shearing of the turbidity current and leads to scouring. This flow mechanism plays a key role in the propagation of submarine channel systems

    Compact 20-pass thin-disk amplifier insensitive to thermal lensing

    Full text link
    We present a multi-pass amplifier which passively compensates for distortions of the spherical phase front occurring in the active medium. The design is based on the Fourier transform propagation which makes the output beam parameters insensitive to variation of thermal lens effects in the active medium. The realized system allows for 20 reflections on the active medium and delivers a small signal gain of 30 with M2^2 = 1.16. Its novel geometry combining Fourier transform propagations with 4f-imaging stages as well as a compact array of adjustable mirrors allows for a layout with a footprint of 400 mm x 1000 mm.Comment: 7 pages, 6 figure

    Nonthermal Emission from the Arches Cluster (G0.121+0.017) and the Origin of Îł\gamma-ray Emission from 3EG J1746-2851

    Full text link
    High resolution VLA observations of the Arches cluster near the Galactic center show evidence of continuum emission at λ\lambda3.6, 6, 20 and 90cm. The continuum emission at λ\lambda90cm is particularly striking because thermal sources generally become optically thick at longer wavelengths and fall off in brightness whereas non-thermal sources increase in brightness. It is argued that the radio emission from this unique source has compact and diffuse components produced by thermal and nonthermal processes, respectively. Compact sources within the cluster arise from stellar winds of mass-losing stars (Lang, Goss & Rodriguez 2001a) whereas diffuse emission is likely to be due to colliding wind shocks of the cluster flow generating relativistic particles due to diffuse shock acceleration. We also discuss the possibility that γ\gamma-ray emission from 3EG J1746--2851, located within 3.3′' of the Arches cluster, results from the inverse Compton scattering of the radiation field of the cluster.Comment: 15 pages, four figures, ApJL (in press

    Spectral Energy Distributions of Gamma Ray Bursts Energized by External Shocks

    Get PDF
    Sari, Piran, and Narayan have derived analytic formulas to model the spectra from gamma-ray burst blast waves that are energized by sweeping up material from the surrounding medium. We extend these expressions to apply to general radiative regimes and to include the effects of synchrotron self-absorption. Electron energy losses due to the synchrotron self-Compton process are also treated in a very approximate way. The calculated spectra are compared with detailed numerical simulation results. We find that the spectral and temporal breaks from the detailed numerical simulation are much smoother than the analytic formulas imply, and that the discrepancies between the analytic and numerical results are greatest near the breaks and endpoints of the synchrotron spectra. The expressions are most accurate (within a factor of ~ 3) in the optical/X-ray regime during the afterglow phase, and are more accurate when epsilon_e, the fraction of swept-up particle energy that is transferred to the electrons, is <~ 0.1. The analytic results provide at best order-of-magnitude accuracy in the self-absorbed radio/infrared regime, and give poor fits to the self-Compton spectra due to complications from Klein-Nishina effects and photon-photon opacity.Comment: 16 pages, 7 figures, ApJ, in press, 537, July 1, 2000. Minor changes in response to referee report, corrected figure

    Enhanced transmission versus localization of a light pulse by a subwavelength metal slit: Can the pulse have both characteristics?

    Full text link
    The existence of resonant enhanced transmission and collimation of light waves by subwavelength slits in metal films [for example, see T.W. Ebbesen et al., Nature (London) 391, 667 (1998) and H.J. Lezec et al., Science, 297, 820 (2002)] leads to the basic question: Can a light be enhanced and simultaneously localized in space and time by a subwavelength slit? To address this question, the spatial distribution of the energy flux of an ultrashort (femtosecond) wave-packet diffracted by a subwavelength (nanometer-size) slit was analyzed by using the conventional approach based on the Neerhoff and Mur solution of Maxwell's equations. The results show that a light can be enhanced by orders of magnitude and simultaneously localized in the near-field diffraction zone at the nm- and fs-scales. Possible applications in nanophotonics are discussed.Comment: 5 figure
    • …
    corecore