175 research outputs found
Revealing language deficits following stroke: the cost of doing two things at once
This is an electronic version of an article published in Kemper, S., McDowd, J., Pohl, P., Herman, R., & Jackson, S. (2006). Revealing language deficits following stroke: the cost of doing two things at once. Aging, Neuropsychology, and Cognition, 13, 115-139. PM#16766346. Aging, Neuropsychology, and Cognition is available online at www.taylorandfrancis.comThe costs of doing two things were assessed for a group of healthy older adults and older adults who were tested at least 6 months after a stroke. A baseline language sample was compared to language samples collected while the participants were performing concurrent motor tasks or selective ignoring tasks. Whereas the healthy older adults showed few costs due to the concurrent task demands, the language samples from the stroke survivors were disrupted by the demands of doing two things at once. The dual task measures reveal long-lasting effects of strokes that were not evident when stroke survivors were assessed using standard clinical tools
Pharmacological inhibition of acetylcholinesterase improves the locomotion defective phenotype of a SCA3 C. elegans model.
Inhibition of acetylcholinesterase (AChE) is a common used treatment option for Alzheimer’s disease. However, there has been limited research on the potential use of AChE inhibitors for the treatment of Machado-Joseph disease (MJD)/Spinocerebellar Ataxia 3 (SCA3), in spite of the positive results using AChE inhibitors in patients with other inherited ataxias. MJD/SCA3, the most common form of dominant Spinocerebellar Ataxia worldwide, is caused by an expansion of the polyglutamine tract within the ataxin-3 protein, and is characterized by motor impairments. Our study shows that administration of the AChE inhibitor neostigmine is beneficial in treating the locomotion defective phenotype of a SCA3/MJD model of C. elegans and highlights the potential contribution of AChE enzymes to mutant ataxin-3-mediated toxicity
Adsorbate-enhanced transport of metals on metal surfaces: Oxygen and sulfur on coinage metals
Coarsening (i.e., ripening) of single-atom-high, metal homoepitaxial islands provides a useful window on the mechanism and kinetics of mass transport at metal surfaces. This article focuses on this type of coarsening on the surfaces of coinage metals (Cu, Ag, Au), both clean and with an adsorbed chalcogen (O, S) present. For the clean surfaces, three aspects are summarized: (1) the balance between the two major mechanisms—Ostwald ripening (the most commonly anticipated mechanism) and Smoluchowski ripening—and how that balance depends on island size; (2) the nature of the mass transport agents, which are metal adatoms in almost all known cases; and (3) the dependence of the ripening kinetics on surface crystallography. Ripening rates are in the order (110)\u3e(111)\u3e(100), a feature that can be rationalized in terms of the energetics of key processes. This discussion of behavior on the clean surfaces establishes a background for understanding why coarsening can be accelerated by adsorbates. Evidence that O and S accelerate mass transport on Ag, Cu, and Au surfaces is then reviewed. The most detailed information is available for two specific systems, S/Ag (111) and S/Cu(111). Here, metal-chalcogen clusters are clearly responsible for accelerated coarsening. This conclusion rests partly on deductive reasoning, partly on calculations of key energetic quantities for the clusters (compared with quantities for the clean surfaces), and partly on direct experimental observations. In these two systems, it appears that the adsorbate, S, must first decorate—and, in fact, saturate—the edges of metal islands and steps, and then build up at least slightly in coverage on the terraces before acceleration begins. Acceleration can occur at coverages as low as a few thousandths to a few hundredths of a monolayer. Despite the significant recent advances in our understanding of these systems, many open questions remain. Among them is the identification of the agents of mass transport on crystallographically different surfaces e.g., 111, 110, and 100
Researchers' roles in knowledge co-production: experience from sustainability research in Kenya, Switzerland, Bolivia and Nepal
Co-production of knowledge between academic and non-academic communities is a prerequisite for research aiming at more sustainable development paths. Sustainability researchers face three challenges in such co-production: (a) addressing power relations; (b) interrelating different perspectives on the issues at stake; and (c) promoting a previously negotiated orientation towards sustainable development. A systematic comparison of four sustainability research projects in Kenya (vulnerability to drought), Switzerland (soil protection), Bolivia and Nepal (conservation vs. development) shows how the researchers intuitively adopted three different roles to face these challenges: the roles of reflective scientist, intermediary, and facilitator of a joint learning process. From this systematized and iterative self-reflection on the roles that a researcher can assume in the indeterminate social space where knowledge is co-produced, we draw conclusions regarding trainin
Digitalization and Sustainability: A Call for a Digital Green Deal
The relation between digitalization and environmental sustainability is ambiguous. There is potential of various digital technologies to slow down the transgression of planetary boundaries. Yet resource and energy demand for digital hardware production and use of data-intensive applications is of substantial size. The world over, there is no comprehensive regulation that addresses opportunities and risks of digital technology for sustainability. In this perspective article, we call for a Digital Green Deal that includes strong, cross-sectoral green digitalization policies on all levels of governance. We argue that a Digital Green Deal should first and foremost aim at greater policy coherence: Current digital policy initiatives should include measures that service environmental goals, and environmental policies must address risks and advance opportunities of digital technologies to spur sustainability transformations
Short-term functional adaptation of aquaporin-1 surface expression in the proximal tubule, a component of glomerulotubular balance
Transepithelial water flow across the renal proximal tubule is mediated predominantly by aquaporin-1 (AQP1). Along this nephron segment, luminal delivery and transepithelial reabsorption are directly coupled, a phenomenon called glomerulotubular balance. We hypothesized that the surface expression of AQP1 is regulated by fluid shear stress, contributing to this effect. Consistent with this finding, we found that the abundance of AQP1 in brush border apical and basolateral membranes was augmented >2-fold by increasing luminal perfusion rates in isolated, microperfused proximal tubules for 15 minutes. Mouse kidneys with diminished endocytosis caused by a conditional deletion of megalin or the chloride channel ClC-5 had constitutively enhanced AQP1 abundance in the proximal tubule brush border membrane. In AQP1-transfected, cultured proximal tubule cells, fluid shear stress or the addition of cyclic nucleotides enhanced AQP1 surface expression and concomitantly diminished its ubiquitination. These effects were also associated with an elevated osmotic water permeability. In sum, we have shown that luminal surface expression of AQP1 in the proximal tubule brush border membrane is regulated in response to flow. Cellular trafficking, endocytosis, an intact endosomal compartment, and controlled protein stability are the likely prerequisites for AQP1 activation by enhanced tubular fluid shear stress, serving to maintain glomerulotubular balance
Recommended from our members
Acute Effects of Assisted Cycling Therapy on Post-Stroke Motor Function: A Pilot Study
Background. Stroke is the most common cause of long-term disability in the United States (US). Assisted Cycling Therapy (ACT) at cadences of about 80 rpm has been associated with improvements in motor and clinical function in other clinical populations. The acute effects of ACT on motor function of persons with stroke have not been investigated. Objectives. The primary purpose of this cross-over trial was to compare the effects of ACT, voluntary cycling (VC), and no cycling (NC) on upper (Box and Blocks Test) and lower extremity motor function (Lower Extremity Motor Coordination Test) in adults with chronic stroke (age: 60 +/- 16 years; months since stroke: 96 +/- 85). The secondary purpose was to examine average cycling cadence and ratings of perceived exertion as predictors of change in motor function following the exercise session. Methods. Twenty-two participants (female = 6, male = 16) completed one 20-min session each of ACT (mean cadence = 79.5 rpm, VC (mean cadence = 51.5 rpm), and NC on separate days in quasi-counterbalanced fashion). Results. Main effects of intervention did not differ between ACT and VC. Within-intervention analyses revealed significant (p < 0.05) pre- to posttest changes in all outcome measures for ACT but only in the Lower Extremity Motor Coordination Test on the non-paretic side for VC. Trend analyses revealed a positive relationship between average ACT cadences and improvements in upper and lower extremity motor function (p < 0.05). A positive relationship between average VC cadences and lower extremity function was also revealed (p < 0.05). Conclusion. ACT and VC produced similar acute improvements in paretic and non-paretic lower extremity motor function whereas changes in upper extremity motor function were more limited. Faster cycling cadences seem to be associated with greater acute effects.Athletics Research Grant Program of the Graduate and Professional Student Organization at Arizona State University [asu 0010E 16736]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Acute Effects of Assisted Cycling Therapy on Post-Stroke Motor Function: A Pilot Study
Background. Stroke is the most common cause of long-term disability in the United States (US). Assisted Cycling Therapy (ACT) at cadences of about 80 rpm has been associated with improvements in motor and clinical function in other clinical populations. The acute effects of ACT on motor function of persons with stroke have not been investigated. Objectives. The primary purpose of this cross-over trial was to compare the effects of ACT, voluntary cycling (VC), and no cycling (NC) on upper (Box and Blocks Test) and lower extremity motor function (Lower Extremity Motor Coordination Test) in adults with chronic stroke (age: 60 +/- 16 years; months since stroke: 96 +/- 85). The secondary purpose was to examine average cycling cadence and ratings of perceived exertion as predictors of change in motor function following the exercise session. Methods. Twenty-two participants (female = 6, male = 16) completed one 20-min session each of ACT (mean cadence = 79.5 rpm, VC (mean cadence = 51.5 rpm), and NC on separate days in quasi-counterbalanced fashion). Results. Main effects of intervention did not differ between ACT and VC. Within-intervention analyses revealed significant (p < 0.05) pre- to posttest changes in all outcome measures for ACT but only in the Lower Extremity Motor Coordination Test on the non-paretic side for VC. Trend analyses revealed a positive relationship between average ACT cadences and improvements in upper and lower extremity motor function (p < 0.05). A positive relationship between average VC cadences and lower extremity function was also revealed (p < 0.05). Conclusion. ACT and VC produced similar acute improvements in paretic and non-paretic lower extremity motor function whereas changes in upper extremity motor function were more limited. Faster cycling cadences seem to be associated with greater acute effects.Athletics Research Grant Program of the Graduate and Professional Student Organization at Arizona State University [asu 0010E 16736]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
DNA methylation-based classification of central nervous system tumours.
Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology
- …