13,532 research outputs found

    Electromagnetically Induced Transparency in strongly interacting Rydberg Gases

    Full text link
    We develop an efficient Monte-Carlo approach to describe the optical response of cold three-level atoms in the presence of EIT and strong atomic interactions. In particular, we consider a "Rydberg-EIT medium" where one involved level is subject to large shifts due to strong van der Waals interactions with surrounding Rydberg atoms. We find excellent agreement with much more involved quantum calculations and demonstrate its applicability over a wide range of densities and interaction strengths. The calculations show that the nonlinear absorption due to Rydberg-Rydberg atom interactions exhibits universal behavior

    Three-dimensional tracking solar energy concentrator and method for making same

    Get PDF
    A three dimensional tracking solar energy concentrator, consisting of a stretched aluminized polymeric membrane supported by a hoop, was presented. The system is sturdy enough to withstand expected windage forces and precipitation. It can provide the high temperature output needed by central station power plants for power production in the multi-megawatt range

    Velocity Relaxation in a Strongly Coupled Plasma

    Get PDF
    Collisional relaxation of Coulomb systems is studied in the strongly coupled regime. We use an optical pump-probe approach to manipulate and monitor the dynamics of ions in an ultracold neutral plasma, which allows direct measurement of relaxation rates in a regime where common Landau-Spitzer theory breaks down. Numerical simulations confirm the experimental results and display non-Markovian dynamics at early times.Comment: 5 pages, 5 figure

    Strongly Coupled Plasmas via Rydberg-Blockade of Cold Atoms

    Full text link
    We propose and analyze a new scheme to produce ultracold neutral plasmas deep in the strongly coupled regime. The method exploits the interaction blockade between cold atoms excited to high-lying Rydberg states and therefore does not require substantial extensions of current ultracold plasma experiments. Extensive simulations reveal a universal behavior of the resulting Coulomb coupling parameter, providing a direct connection between the physics of strongly correlated Rydberg gases and ultracold plasmas. The approach is shown to reduce currently accessible temperatures by more than an order of magnitude, which opens up a new regime for ultracold plasma research and cold ion-beam applications with readily available experimental techniques.Comment: 5 pages, 5 figure

    Portable linear-focused solar thermal energy collecting system

    Get PDF
    A solar heat collection system is provided by utilizing a line-focusing device that is effectively a cylindrically curved concentrator within a protected environment formed by a transparent inflatable casing. A target, such as a fluid or gas carrying conduit is positioned within or near the casing containing the concentrator, at the line focus of the concentrator. The casing can be inflated at the site of use by a low pressure air supply to form a unitary light weight structure. The collector, including casing, concentrator and target, is readily transportable and can be used either at ground level or on rooftops. The inflatable concentrator can be replaced with a rigid metal or other concentrator while maintaining the novel advantages of the whole solar heat collection system

    Gamma-Rays Produced in Cosmic-Ray Interactions and the TeV-band Spectrum of RX J1713.7-3946

    Full text link
    We employ the Monte Carlo particle collision code DPMJET3.04 to determine the multiplicity spectra of various secondary particles (in addition to π0\pi^0's) with γ\gamma's as the final decay state, that are produced in cosmic-ray (pp's and α\alpha's) interactions with the interstellar medium. We derive an easy-to-use γ\gamma-ray production matrix for cosmic rays with energies up to about 10 PeV. This γ\gamma-ray production matrix is applied to the GeV excess in diffuse Galactic γ\gamma-rays observed by EGRET, and we conclude the non-π0\pi^0 decay components are insufficient to explain the GeV excess, although they have contributed a different spectrum from the π0\pi^0-decay component. We also test the hypothesis that the TeV-band γ\gamma-ray emission of the shell-type SNR RX J1713.7-3946 observed with HESS is caused by hadronic cosmic rays which are accelerated by a cosmic-ray modified shock. By the χ2\chi^2 statistics, we find a continuously softening spectrum is strongly preferred, in contrast to expectations. A hardening spectrum has about 1% probability to explain the HESS data, but then only if a hard cutoff at 50-100 TeV is imposed on the particle spectrum.Comment: 3 pages; 4 figures; Contribution to the First GLAST Symposium, Standord, 200

    Experimental Realization of an Exact Solution to the Vlasov Equations for an Expanding Plasma

    Get PDF
    We study the expansion of ultracold neutral plasmas in the regime in which inelastic collisions are negligible. The plasma expands due to the thermal pressure of the electrons, and for an initial spherically symmetric Gaussian density profle, the expansion is self-similar. Measurements of the plasma size and ion kinetic energy using fluorescence imaging and spectroscopy show that the expansion follows an analytic solution of the Vlasov equations for an adiabatically expanding plasma.Comment: 4 pages, 4 figure

    Charged Current Neutrino Nucleus Interactions at Intermediate Energies

    Full text link
    We have developed a model to describe the interactions of neutrinos with nucleons and nuclei, focusing on the region of the quasielastic and Delta(1232) peaks. We describe neutrino nucleon collisions with a fully relativistic formalism which incorporates state-of-the-art parametrizations of the form factors for both the nucleon and the N-Delta transition. The model has then been extended to finite nuclei, taking into account nuclear effects such as Fermi motion, Pauli blocking (both within the local density approximation), nuclear binding and final state interactions. The in-medium modification of the Delta resonance due to Pauli blocking and collisional broadening have also been included. Final state interactions are implemented by means of the Boltzmann-Uehling-Uhlenbeck (BUU) coupled-channel transport model. Results for charged current inclusive cross sections and exclusive channels as pion production and nucleon knockout are presented and discussed.Comment: 26 pages, 24 figures; v2: 2 figures and discussion added, version accepted for publication in Phys. Rev.
    corecore