250 research outputs found

    First ice core records of NO3− stable isotopes from Lomonosovfonna, Svalbard

    Get PDF
    Samples from two ice cores drilled at Lomonosovfonna, Svalbard, covering the period 1957–2009, and 1650–1995, respectively, were analyzed for NO3− concentrations, and NO3− stable isotopes (δ15N and δ18O). Post-1950 δ15N has an average of (−6.9 ± 1.9) ‰, which is lower than the isotopic signal known for Summit, Greenland, but agrees with values observed in recent Svalbard snow and aerosol. Pre-1900 δ15N has an average of (4.2 ± 1.6) ‰ suggesting that natural sources, enriched in the 15 N-isotope, dominated before industrialization. The post-1950 δ18O average of (75.1 ± 4.1) ‰ agrees with data from low and polar latitudes, suggesting similar atmospheric NOy (NOy = NO + NO2 + HNO3) processing pathways. The combination of anthropogenic source δ15N and transport isotope effect was estimated as −29.1 ‰ for the last 60 years. This value is below the usual range of NOx (NOx = NO + NO2) anthropogenic sources which is likely the result of a transport isotope effect of –32 ‰. We suggest that the δ15N recorded at Lomonosovfonna is influenced mainly by fossil fuel combustion, soil emissions and forest fires; the first and second being responsible for the marked decrease in δ15N observed in the post-1950s record with soil emissions being associated to the decreasing trend in δ15N observed up to present time, and the third being responsible for the sharp increase of δ15N around 2000

    Tensile-strained GaAsN quantum dots on InP

    Get PDF
    Self-assembled quantum dots are typically fabricated from compressive-strained material systems, e.g., InAs on GaAs. In this letter, self-assembled quantum dots from tensile-strained GaAsN on InP are demonstrated. GaAsN on InP has type-I band alignment. Stranski-Krastanov growth mode is not observed, but in situannealing of the uncapped samples results in the formation of islands. Photoluminescence spectra from the buried GaAsN show separate peaks due to a wetting layer and islands around the energies of 1.3 and 1.1eV, respectively.Peer reviewe

    SU(4) Fermi Liquid State and Spin Filtering in a Double Quantum Dot System

    Full text link
    We study a symmetrical double quantum dot (DD) system with strong capacitive inter-dot coupling using renormalization group methods. The dots are attached to separate leads, and there can be a weak tunneling between them. In the regime where there is a single electron on the DD the low-energy behavior is characterized by an SU(4)-symmetric Fermi liquid theory with entangled spin and charge Kondo correlations and a phase shift π/4\pi/4. Application of an external magnetic field gives rise to a large magneto-conductance and a crossover to a purely charge Kondo state in the charge sector with SU(2) symmetry. In a four lead setup we find perfectly spin polarized transmission.Comment: 4 pages, 4 figures, ReVTe

    Resonant Tunneling through Multi-Level and Double Quantum Dots

    Full text link
    We study resonant tunneling through quantum-dot systems in the presence of strong Coulomb repulsion and coupling to the metallic leads. Motivated by recent experiments we concentrate on (i) a single dot with two energy levels and (ii) a double dot with one level in each dot. Each level is twofold spin-degenerate. Depending on the level spacing these systems are physical realizations of different Kondo-type models. Using a real-time diagrammatic formulation we evaluate the spectral density and the non-linear conductance. The latter shows a novel triple-peak resonant structure.Comment: 4 pages, ReVTeX, 4 Postscript figure

    Interference in interacting quantum dots with spin

    Full text link
    We study spectral and transport properties of interacting quantum dots with spin. Two particular model systems are investigated: Lateral multilevel and two parallel quantum dots. In both cases different paths through the system can give rise to interference. We demonstrate that this strengthens the multilevel Kondo effect for which a simple two-stage mechanism is proposed. In parallel dots we show under which conditions the peak of an interference-induced orbital Kondo effect can be split.Comment: 8 pages, 8 figure

    Comparing health-related quality of life in modified Rankin Scale grades : 15D results from 323 patients with brain arteriovenous malformation and population controls

    Get PDF
    Background We wanted to understand how patients with different modified Rankin Scale (mRS) grades differ regarding their health-related quality of life (HRQoL) and how this affects the interpretation and dichotomization of the grade. Methods In 2016, all adult patients in our brain arteriovenous malformation (AVM) database (n = 432) were asked to fill in mailed letters including a questionnaire about self-sufficiency and lifestyle and the 15D HRQoL questionnaire. The follow-up mRS was defined in 2016 using the electronic patient registry and the questionnaire data. The 15D profiles of each mRS grade were compared to those of the general population and to each other, using ANCOVA with age and sex standardization. Results Patients in mRS 0 (mean 15D score = 0.954 +/- 0.060) had significantly better HRQoL than the general population (mean = 0.927 +/- 0.028), p < 0.0001, whereas patients in mRS 1-4 had worse HRQoL than the general population, p < 0.0001. Patients in mRS 1 (mean = 0.844 +/- 0.100) and mRS 2 (mean = 0.838 +/- 0.107) had a similar HRQoL. In the recently published AVM research, the most commonly used cut points for mRS dichotomization were between mRS 1 and 2 and between mRS 2 and 3. Conclusions Using 15D, we were able to find significant differences in the HRQoL between mRS 0 and mRS 1 AVM patients, against the recent findings on stroke patients using EQ-5D in their analyses. Although the dichotomization cut point is commonly set between mRS 1 and 2, patients in these grades had a similar HRQoL and a decreased ability to continue their premorbid lifestyle, in contrast to patients in mRS 0.Peer reviewe

    Enhancement of Kondo effect in quantum dots with an even number of electrons

    Full text link
    We investigate the Kondo effect in a quantum dot with almost degenerate spin-singlet and triplet states for an even number of electrons. We show that the Kondo temperature as a function of the energy difference between the states Delta reaches its maximum around Delta=0 and decreases with increasing Delta. The Kondo effect is thus enhanced by competition between singlet and triplet states. Our results explain recent experimental findings. We evaluate the linear conductance in the perturbative regime.Comment: 5 pages; Phys. Rev. Lett., in pres

    Spin dynamics of Mn12-acetate in the thermally-activated tunneling regime: ac-susceptibility and magnetization relaxation

    Full text link
    In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape is found to stem from the tunneling. The dynamic susceptibility χ(w)\chi(w) is calculated starting from the microscopic Hamiltonian and the resonant structure manifests itself also in χ(w)\chi(w). Similar to recent results reported on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for strong transverse magnetic fields to study of these oscillations and for a better resolution of the sharp satellite peaks in the relaxation rates.Comment: 22 pages, 23 figures; submitted to Phys. Rev. B; citations/references adde
    • …
    corecore