865 research outputs found

    Characterization of copy number alterations in a mouse model of fibrosis-associated hepatocellular carcinoma reveals concordance with human disease

    Get PDF
    AbstractHepatocellular carcinoma (HCC) is a prevalent human cancer with rising incidence worldwide. Human HCC is frequently associated with chronic liver inflammation and cirrhosis, pathophysiological processes that are a consequence of chronic viral infection, disturbances in metabolism, or exposure to chemical toxicants. To better characterize the pathogenesis of HCC, we used a human disease‐relevant mouse model of fibrosis‐associated hepatocarcinogenesis. In this model, marked liver tumor response caused by the promutagenic chemical N‐nitrosodiethylamine in the presence of liver fibrosis was associated with epigenetic events indicative of genomic instability. Therefore, we hypothesized that DNA copy number alterations (CNAs), a feature of genomic instability and a common characteristic of cancer, are concordant between human HCC and mouse models of fibrosis‐associated hepatocarcinogenesis. We evaluated DNA CNAs and changes in gene expression in the mouse liver (normal, tumor, and nontumor fibrotic tissues). Additionally, we compared our findings to DNA CNAs in human HCC cases (tumor and nontumor cirrhotic/fibrotic tissues) using publicly available data from The Cancer Genome Atlas (TCGA). We observed that while fibrotic liver tissue is largely devoid of DNA CNAs, highly frequently occurring DNA CNAs are found in mouse tumors, which is indicative of a profound increase in chromosomal instability in HCC. The cross‐species gene‐level comparison of CNAs identified shared regions of CNAs between human fibrosis‐ and cirrhosis‐associated liver tumors and mouse fibrosis‐associated HCC. Our results suggest that CNAs most commonly arise in neoplastic tissue rather than in fibrotic or cirrhotic liver, and demonstrate the utility of this mouse model in replicating the molecular features of human HCC

    Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (Virus-induced plant genome instability)

    Get PDF
    Previously, we reported the generation of a virus-induced systemic signal that increased the somatic and meiotic recombination rates in tobacco mosaic virus (TMV)-infected tobacco plants. Here, we analyzed the progeny of plants that received the signal and found that these plants also have a higher frequency of rearrangements in the loci carrying the homology to LRR region of the gene of resistance to TMV (N-gene). Analysis of the stability of repetitive elements from Nicotiana tabacum loci and 5.8S ribosomal RNA loci did not show any changes. Further analysis of the changes in the progeny of infected plants revealed that they had substantially hypermethylated genomes. At the same time, loci-specific methylation analysis showed: (1) profound hypomethylation in several LRR-containing loci; (2) substantial hypermethylation of actin loci and (3) no change in methylation in the loci of repetitive elements from N. tabacum or 5.8S ribosomal RNA. Global genome hypermethylation of the progeny is believed to be part of a general protection mechanism against stress, whereas locus-specific hypomethylation is associated with a higher frequency of rearrangements. Increased recombination events combined with the specific methylation pattern induced by pathogen attack could be a sign of an adaptive response by plants

    Mild folate deficiency induces genetic and epigenetic instability and phenotype changes in prostate cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Folate (vitamin B9) is essential for cellular proliferation as it is involved in the biosynthesis of deoxythymidine monophosphate (dTMP) and s-adenosylmethionine (AdoMet). The link between folate depletion and the genesis and progression of cancers of epithelial origin is of high clinical relevance, but still unclear. We recently demonstrated that sensitivity to low folate availability is affected by the rate of polyamine biosynthesis, which is prominent in prostate cells. We, therefore, hypothesized that prostate cells might be highly susceptible to genetic, epigenetic and phenotypic changes consequent to folate restriction.</p> <p>Results</p> <p>We studied the consequences of long-term, mild folate depletion in a model comprised of three syngenic cell lines derived from the transgenic adenoma of the mouse prostate (TRAMP) model, recapitulating different stages of prostate cancer; benign, transformed and metastatic. High-performance liquid chromatography analysis demonstrated that mild folate depletion (100 nM) sufficed to induce imbalance in both the nucleotide and AdoMet pools in all prostate cell lines. Random oligonucleotide-primed synthesis (ROPS) revealed a significant increase in uracil misincorporation and DNA single strand breaks, while spectral karyotype analysis (SKY) identified five novel chromosomal rearrangements in cells grown with mild folate depletion. Using global approaches, we identified an increase in CpG island and histone methylation upon folate depletion despite unchanged levels of total 5-methylcytosine, indicating a broad effect of folate depletion on epigenetic regulation. These genomic changes coincided with phenotype changes in the prostate cells including increased anchorage-independent growth and reduced sensitivity to folate depletion.</p> <p>Conclusions</p> <p>This study demonstrates that prostate cells are highly susceptible to genetic and epigenetic changes consequent to mild folate depletion as compared to cells grown with supraphysiological amounts of folate (2 μM) routinely used in tissue culture. In addition, we elucidate for the first time the contribution of these aspects to consequent phenotype changes in epithelial cells. These results provide a strong rationale for studying the effects of folate manipulation on the prostate <it>in vivo</it>, where cells might be more sensitive to changes in folate status resulting from folate supplementation or antifolate therapeutic approaches.</p

    Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent cancers in humans. The molecular mechanisms leading to the development of HCC are extremely complicated and consist of prominent genetic, genomic, and epigenetic alterations. This review summarizes the current knowledge of the role of epigenetic aberrations, including changes in DNA methylation, histone modifications, and expression of microRNAs in the pathogenesis of HCC. It also emphasizes that identification of the underlying epigenetic alterations that drive cell transformation and promote development and progression of HCC is crucially important for understanding mechanisms of hepatocarcinogenesis, its detection, therapeutic intervention, and prevention

    MicroRNAs in normal and cancer cells: a new class of gene expression regulators

    No full text
    MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at posttranscriptional level. They are involved in cellular development, differentiation, proliferation and apoptosis and play a significant role in cancer. This review describes miRNA biogenesis, their functions in normal cells, and alterations of miRNA sets in cancer and roles of antitumorigenic and oncogenic miRNAs in cancer development.Микро PHK(miRNAs) — это малое не кодирующие РНК, негативно регулирующие экспрессию генов на посттранскринц ионном уровне и принимаюшие участие в развитии, лифферешшровке. пролиферации и апоптозе клеток, а также выполняющие важную роль в опухолевом процессе. В обзоре обсужден биогенез miRNA, функции этих молекул в нормальных клетках, изменения набора miRNA в опухолевых клетках и роль противоопухолевых и онкогенных nnRNAs в опухолевой прогрессии. Ключевые сюва: микроРНК, рак. онкоген, опухолевый супрессор

    Epigenetic aspects of genotoxic and non-genotoxic hepatocarcinogenesis: Studies in rodents

    Get PDF
    Hepatocellular carcinoma, which is one of the most prevalent life-threatening human cancers, is showing an increased incidence worldwide. Recent evidence indicates that the development of hepatocellular carcinoma is associated with not only genetic alterations, but also with profound epigenetic changes. This review summarizes the current knowledge about epigenetic alterations during rodent hepatocarcinogenesis, considers the similarities and differences in epigenetic effects of genotoxic and non-genotoxic rodent liver carcinogens, and discusses the possible role of these effects in the causality of liver tumor development

    Chronic administration of ethanol leads to an increased incidence of hepatocellular adenoma by promoting H-ras-mutated cells

    Get PDF
    This study used tissue samples from male B6C3F1 mice treated with ethanol in drinking water (0, 2.5, or 5%) for 4 or 104 weeks. We tested whether chronic alcohol drinking promotes oxidative stress in the liver and characterized the mutation profile of spontaneous and ethanol-induced tumors. We show that ethanol does not cause detectable oxidative stress in the liver at any time point and acts by promoting H-ras mutated cells

    MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice

    Get PDF
    Hepatic steatosis is a global epidemic that is thought to contribute to the pathogenesis of type 2 diabetes. MicroRNAs (miRs) are regulators that can functionally integrate a range of metabolic and inflammatory pathways in liver. We aimed to investigate the functional role of miR-155 in hepatic steatosis. Male C57BL/6 wild-type (WT) and miR-155−/− mice were fed either normal chow or high fat diet (HFD) for 6 months then lipid levels, metabolic and inflammatory parameters were assessed in livers and serum of the mice. Mice lacking endogenous miR-155 that were fed HFD for 6 months developed increased hepatic steatosis compared to WT controls. This was associated with increased liver weight and serum VLDL/LDL cholesterol and alanine transaminase (ALT) levels, as well as increased hepatic expression of genes involved in glucose regulation (Pck1, Cebpa), fatty acid uptake (Cd36) and lipid metabolism (Fasn, Fabp4, Lpl, Abcd2, Pla2g7). Using miRNA target prediction algorithms and the microarray transcriptomic profile of miR-155−/− livers, we identified and validated that Nr1h3 (LXRα) as a direct miR-155 target gene that is potentially responsible for the liver phenotype of miR-155−/− mice. Together these data indicate that miR-155 plays a pivotal role regulating lipid metabolism in liver and that its deregulation may lead to hepatic steatosis in patients with diabetes
    corecore