
Epigenetic Aspects of Genotoxic and Non-Genotoxic
Hepatocarcinogenesis:
Studies in Rodents

Igor P. Pogribny1,*, Ivan Rusyn2, and Frederick A. Beland1
1Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas

2Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North
Carolina

Abstract
Hepatocellular carcinoma, which is one of the most prevalent life-threatening human cancers, is
showing an increased incidence worldwide. Recent evidence indicates that the development of
hepatocellular carcinoma is associated with not only genetic alterations, but also with profound
epigenetic changes. This review summarizes the current knowledge about epigenetic alterations
during rodent hepatocarcinogenesis, considers the similarities and differences in epigenetic effects
of genotoxic and non-genotoxic rodent liver carcinogens, and discusses the possible role of these
effects in the causality of liver tumor development.
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INTRODUCTION
Hepatocellular carcinoma (HCC), which is one of the most prevalent life-threatening human
cancers, is showing an increased incidence worldwide [Thorgeirsson and Grisham, 2002;
Moradpour and Blum, 2005; McKillop et al., 2006]. HCC represents ∼85% of all liver cancers
and is an aggressive disease [McKillop et al., 2006; Hussain et al., 2007]. The most prominent
etiological factors associated with HCC are chronic viral hepatitis B and C infections, exposure
to environmental chemicals and alcohol, and metabolic liver diseases [Moradpour and Blum,
2005; McKillop et al., 2006]; however, the molecular and cellular mechanisms of HCC
pathogenesis are still poorly understood. Recent evidence indicates that HCC is associated with
not only genetic alterations, such as DNA damage and chromosomal aberrations, but also with
a substantial deregulation of the cellular epigenome, such as aberrant DNA methylation and
histone modification [Shen et al., 1998; Lee et al., 2003; Pogribny et al., 2006a,b; Lehmann et
al., 2007].

The development and progression of HCC in humans is a multistep, long-term process (more
than 30 years) characterized by the progressive sequential evolution of morphologically distinct
stages, such as chronic liver injury, necro-inflamation and regeneration, small cell dysplasia,
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low-grade and high-grade dysplastic nodules, and culminating in the formation of fully
developed HCC [Thorgeirsson and Grisham, 2002; Libbrecht et al., 2005]. In humans, most
of the research on HCC is conducted on patients who have already developed the disease. This
limits the scope of the investigation to tumor biology and does not allow extensive inquiry into
the mechanisms of disease progression. On the contrary, relevant rodent models of liver
carcinogenesis provide a unique opportunity to understand the role of the etiological factors
and mechanisms of tumor development [Lee et al., 2004].

In a broad sense, hepatocarcinogenesis may be induced through either genotoxic or non-
genotoxic mechanisms. Environmental agents or chemicals are considered genotoxic if they,
or the products of their metabolic activation, interact directly with DNA, causing mutations
and leading to tumor formation [Shuker, 2002]. Non-genotoxic carcinogens are a diverse group
of chemical compounds that are known to cause tumors by mechanisms rather than directly
damaging DNA [Silva and Van der Laan, 2000]. Nonetheless, mounting evidence suggests
that despite different mechanisms of action with regards to DNA reactivity both classes of
agents were shown to lead to prominent epigenomic alterations in tissues that are targets for
carcinogenesis as a result of exposure. This review considers the similarities and differences
in the epigenetic effects of genotoxic and non-genotoxic rodent liver carcinogens and discusses
the possible role of epigenetic changes in the causality of tumor development.

EPIGENETIC REGULATION AND LIVER CANCER
Classically, the development of cancer in humans has been viewed as a progressive multistep
process involving the transformation of normal cells into malignant cells driven in part by
genetic alterations that include mutations and deletions in tumor suppressor genes and
oncogenes, and chromosomal abnormalities [Hanahan and Weinberg, 2000]. However, new
data indicate the importance of epigenetic processes, knowledge that challenges our view on
cancer as a disease dependent only on genetic changes [Jones and Baylin, 2007]. It is now clear
now that cancer is a genetic and epigenetic disease, and both components cooperate at all stages
of cancer development [Feinberg and Tycko, 2004; Jones and Baylin, 2007]. “Genetic” is
defined as a heritable change in the DNA sequence (i.e., mutation), whereas “epigenetic” refers
to heritable changes in gene expression that are not accompanied by changes in the DNA
sequence. In normal cells, epigenetic information is hereditarily maintained to preserve cellular
identity. In contrast, the epigenetic landscape of cancer cells is profoundly distorted, including
a massive loss of global methylation throughout the genome accompanied by hypermethylation
of certain promoters associated with gene silencing [Feinberg and Tycko, 2004; Jones and
Baylin, 2007].

Global hypomethylation of DNA is one of the most common molecular alterations identified
in human cancer cells [Feinberg and Tycko, 2004]. To understand and correctly recognize the
importance of global DNA hypomethylation with respect to the carcinogenic process, it is
necessary to consider the role and sites of DNA methylation in normal cell function. The
majority of DNA methylation in mammalian cells occurs in repetitive DNA elements, and one
of the primary functions of DNA methylation in normal cells is to silence foreign DNA
sequences [Yoder et al., 1997; Goll and Bestor, 2005; Schulz et al., 2006]. It has been suggested
that cancer-linked DNA hypomethylation largely affects the methylation status of repetitive
elements [Yoder et al., 1997; Schulz et al., 2006]. Recent evidence has demonstrated decreased
methylation of repetitive sequences (i.e., LINE1, LTR, SINE) during hepatocarcinogenesis
[Asada et al., 2006; Pogribny et al., 2006a]. Consequently, hypomethylation of repetitive
sequences compromises genomic integrity via chromatin decondensation and activation of
repetitive DNA elements and proto-oncogenes, which results in a variety of genomic and
chromosomal instability events, including cis- and trans-insertional mutagenesis, unequal
homologous recombination, genomic rearrangements, and segmental duplications leading to
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deletions and duplications [Kazazian, 2004]. The causal role of these lesions in the etiology of
cancer, including liver cancer, is now commonly accepted [Coleman and Tsongalis, 2006].

In addition to DNA hypomethylation, many key genes involved in metabolism and cell
function, including APC, GSTP1, p16INK4A, SOCS1, and RASSF1, have been found to undergo
DNA hypermethylation at early pre-cancerous stages of liver carcinogenesis [Lee et al.,
2003; Yang et al., 2003]. Table I shows a selected list of the genes whose expression is
associated with aberrant promoter methylation in HCC. Altered DNA methylation patterns in
HCC are closely related to the disruption of the DNA methylation machinery. Several studies
have demonstrated involvement of altered expression of the maintenance DNA
methyltransferase 1, de novo DNA methyltransferases 3A and 3B, and methyl-CpG-binding
proteins in the initiation, establishment, and maintenance of aberrant DNA methylation patterns
during the development and progression of HCC [Saito et al., 2003; Park et al., 2006].

EPIGENETIC ALTERATIONS DURING NON-GENOTOXIC
HEPATOCARCINOGENESIS

The methyl-deficient model of endogenous liver carcinogenesis is one of the most extensively
studied models of non-genotoxic rodent HCC [Nakae et al., 1992; James et al., 2003]. This
model is unique because dietary omission of sources of methyl groups rather than xenobiotic
addition leads to tumor formation [Nakae, 1999]. In addition, the sequence of pathological and
molecular events is remarkably similar to the development of human HCC associated with
viral hepatitis B and C infections, alcohol exposure, and metabolic liver diseases [Powel et al.,
2005]. One of the earliest epigenetic alterations observed during hepatocarcinogenesis induced
by methyl-deficiency is sustained global hypomethylation of liver DNA [Wainfan and Poirier,
1992; Christman, 2003; Pogribny et al., 2004]. Importantly, these changes are specific to liver
tissue and do not occur in any other organs.

We have recently shown the importance of DNA hypomethylation as a promoting factor for
the clonal expansion of initiated cells [Pogribny et al., 2006a,b]. Similar observations were
reported with respect to other non-genotoxic liver carcinogens, specifically to one of the most
extensively studied classes of non-genotoxic carcinogens—peroxisome proliferators.
Treatment of mice with 4-chloro-6-(2,3-xylidino)-pyrimidinylthioacetic acid (WY-14,643),
trichloroacetic acid, or dichloroacetic acid results in a rapid decrease in global DNA
methylation as well as region-specific changes in DNA methylation [Tao et al., 2000; Ge et
al. 2001; Pogribny et al., in press].

An altered pattern of DNA methylation was also observed in the livers of mice exposed to
other non-genotoxic compounds, such as diethanolamine or phenobarbital, especially in the
livers of the tumor-prone B6C3F1 and C3H mice [Bachman et al., 2006; Philips et al., 2007].
In mouse livers, treatment with these agents results in the rapid appearance of regions with
altered DNA methylation, predominantly progressive accumulation of hypomethylated
regions. Importantly, these changes were more pronounced in the livers of tumor-prone
B6C3F1 mice as compared with the resistant C57BL/6 mice, and were also dependent on the
availability of a functional Constitutive Androstane Receptor [Bachman et al., 2006; Philips
et al., 2007]. This has led to the suggestion that sensitivity to hepatocarcinogenesis may be
inversely related to the capacity to maintain normal patterns of DNA methylation [Goodman
and Watson, 2002].

Another example demonstrating that hypomethylation of DNA is associated with malignant
transformation and that this occurs at early stages of disease was obtained from studies on
arsenic-induced hepatocarcinogenesis. Arsenic is a well-known human carcinogen that does
not act through a classic genotoxic mechanism [Simeonova and Luster, 2000; Rossman,
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2003]. In vitro exposure of the rat liver epithelial cell line TRL 1215 to arsenic produces
malignant transformation concurrently with global DNA hypomethylation [Zhao et al.,
1997]. The extent of DNA hypomethylation in these transformed cells was positively correlated
with the tumorigenicity of the cells upon inoculation into nude mice, clearly indicating that
DNA hypomethylation may be a causative factor in arsenic-induced malignancy [Zhao et al.,
1997]. Additionally, long-term exposure of mice to arsenic induced global DNA and gene-
specific hypomethylation in livers [Chen et al., 2004].

Hypomethylation of DNA is not the only mechanism involved in hepatocarcinogenesis.
Several critical tumor suppressor genes, such as p16INK4A, PTPRO, E-cadherin, and
Connexin26, exhibit DNA hypermethylation in liver at early precancerous stages of rodent
liver carcinogenesis [Pogribny and James, 2002; Motiwala et al., 2003; Calvisi et al., 2004;
Tsujiuchi et al., 2007]. The exact mechanisms causing aberrant DNA methylation in target
organs during carcinogenesis, in general, and hepatocarcinogenesis, in particular, is currently
unknown. However, one of the main factors that may cause this disruption is an alteration of
DNA methylation machinery. Several lines of evidence indicate that altered activity and
expression of DNA methyltransferases and methyl-CpG-binding proteins take place at early
stages of liver carcinogenesis [James et al., 2003; Takiguchi et al., 2003; Li et al., 2006]. In
addition, the presence of DNA and chromatin lesions, such as unrepaired DNA damage, several
forms of cytosine damage products, and DNA-histone crosslink products, may alter the DNA
methylation patterns [Voitkun and Zhitkovich, 1999; Valinluck and Sowers, 2007].

Epigenetic changes during liver carcinogenesis induced by non-genotoxic agents are not
limited to altered DNA methylation patterns. Recently, using two different models of non-
genotoxic hepatocarcinogenesis (methyl-deficient diets and WY-14,643), it was shown that
marked alterations in the trimethylation of histone H3 lysine 9 (H3K9me3) and histone H4
lysine 20 (H4K20me3) occurred in the liver during carcinogenesis [Pogribny et al., 2006a;
Pogribny et al., in press]. Specifically, early stages of hepatocarcinogenesis were characterized
by a progressive decrease in H3K9me3 and H4K20me3. In contrast, a different trend in histone
methylation changes was observed in full-fledged HCC, where there was a continuing decrease
in H4K20me3 but an increase in H3K9me3. A decreased level of H4K20me3 has been observed
in several forms of human cancer [Fraga et al., 2005] leading to the hypothesis that low levels
of H4K20me3 may contribute to the etiology of cancer and can be used as an indicator and
diagnostic marker for neoplastic transformation and tumor growth. The stage-dependent
differences of H3K9me3 and H4K20me3 during carcinogenesis may by explained by their
different functions in cells. One of the primary functions of H3K9me3 and H4K20me3 is in
the formation of heterochromatin [Jenuwein, 2006]. Loss of H3K9me3 and H4K20me3 affects
the stability of the genome by compromising the organisation of heterochromatin. Additionally,
H4K20me3 plays an important role in damage checkpoint control [Sanders et al., 2004], and
H3K9me3 is involved in terminal differentiation [Ait-Si-Ali et al., 2004]. Disturbances in any
or all of these mechanisms induced by loss of H3K9me3 and H4K20me3 may promote the
initial neoplastic cell transformation. In contrast, the increased level H3K9me3 in liver tumors
may be a cellular defense mechanism safeguarding the viability of cancer cells and promoting
tumor growth given the role of H3K9me3 in heterochromatin organisation and gene silencing.

EPIGENETIC ALTERATIONS DURING GENOTOXIC
HEPATOCARCINOGENESIS

It is widely believed that genotoxic carcinogens, including hepatocarcinogens, cause tumor
formation primarily through the direct induction of a variety of genotoxic DNA lesions.
Although the presence of DNA adducts may be a necessary prerequisite, they are not sufficient
for tumor formation, which results from a much broader alterations in cellular homeostasis,
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mainly from the inability of cells to properly maintain and control the expression of genetic
information.

It has been shown that several genotoxic hepatocarcinogens (i.e., 1,2-dimethylhydrazine, N-
nitrosodiethyamine, N-nitrosomorpholine) cause alterations in DNA methylation, in addition
to exerting genotoxic effects [Rao et al., 1989; Münzel et al., 1991; Park et al., 2001]. Recently,
it has been suggested that these epigenetic changes may play a leading causative role in
carcinogenic process induced by genotoxic agents [Jaffe, 2003; Bombail et al., 2004; Karpinets
and Foy, 2005]. Our studies on epigenetic mechanisms of tamoxifen-induced rat
hepatocarcinogenesis support this suggestion. Feeding rats with a tamoxifen-containing diet
resulted in an early and sustained loss of global DNA methylation, hypomethylation of
repetitive DNA sequences, and an altered pattern of histone methylation [Tryndyak et al.,
2007]. Importantly, the early appearance of epigenetic changes and the absence of the evident
morphological abnormalities suggest that these alterations are directly related to the effect of
carcinogen exposure. These changes were remarkably similar to alterations observed during
non-genotoxic hepatocarcinogenesis indicating the significance of epigenetic alterations in the
etiology of liver carcinogenesis induced by both genotoxic and non-genotoxic agents. In this
context, monitoring epigenetic changes represents attractive molecular markers that can assist
in molecular diagnostic and molecular classification of cancers, including HCC.

DISCUSSION AND CONCLUSION
Presently, it is becoming increasingly evident that epigenetic alterations are not only important
features of cancer cells, but they also play a major role in the etiology of cancer [Jaffe, 2003;
Feinberg, 2004; Jones and Baylin, 2007]. Results of recent studies on mechanisms of rodent
hepatocarcinogenesis clearly show that the exposure of rats and mice to various genotoxic and
non-genotoxic hepatocarcinogenic agents results in rapid alterations in the cellular epigenome.
Loss of global and region-specific DNA hypomethylation, especially hypomethylation of
repetitive DNA sequences, promoter hypermethylation of promoters in tumor suppressor
genes, and progressive loss of histone H4 lysine 20 trimethylation accompanied by the
dysbalance between cell proliferation and apoptosis leads to early disruption of cellular
homeostasis in liver. This disruption, in turn, results in the emergence of epigenetically
reprogrammed proliferating cells with a growth-advantage phenotype and a high potential for
the activation of mutator pathways (Fig. 1). Recent evidence showing the importance of
epigenetic changes in the establishment of mutator phenotype in human cancer cells supports
this suggestion [Jacinto and Esteller, 2007]. The remarkable feature of epigenetic changes is
their early appearance and correspondence to alterations in full-fledged HCC suggesting that
these alterations may be used as biomarkers for the carcinogenic process. Lastly, the potential
reversibility of epigenetic changes makes them promising targets for chemoprevention
[Kopelovich et al., 2003].
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Fig. 1.
An integrated view of the role of epigenetic dysregulation in hepatocarcinogenesis. Genotoxic
or non-genotoxic insults injure many liver cells triggering changes in the cellular epigenome.
Alterations in epigenetic mechanisms lead to early disruption of homeostasis in liver cells
characterized by a loss in the balance between cell proliferation and apoptosis, activation of
DNA repetitive sequences in the genome, loss of genomic and chromosomal stability, and
aberrant expression of genomic information. This results in the emergence of the population
of epigenetically reprogrammed proliferating cells with a growth advantage and high potential
for activation of a mutator phenotype and, consequently, leads to malignant cell transformation.
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