17 research outputs found

    Patterns of genetic variation in a prairie wildflower, Silphium integrifolium, suggest a non-prairie origin and locally adaptive variation

    Get PDF
    PREMISE: Understanding the relationship between genetic structure and geography provides information about a species’ history and can be used for breeding and conservation goals. The North American prairie is interesting because of its recent origin and subsequent fragmentation. Silphium integrifolium, an iconic perennial American prairie wildflower, is targeted for domestication, having undergone a few generations of improvement. We present the first application of population genetic data in this species to address the following goals: (1) improve breeding by characterizing genetic structure and (2) identify the species geographic origin and potential targets and drivers of selection during range expansion. METHODS: We developed a reference transcriptome as a genotyping reference for samples from throughout the species range. Population genetic analyses were used to describe patterns of genetic variation, and demographic modeling was used to characterize potential processes that shaped variation. Outlier scans for selection and associations with environmental variables were used to identify loci linked to putative targets and drivers of selection. RESULTS: Genetic variation partitioned samples into three geographic clusters. Patterns of variation and demographic modeling suggest that the species origin is in the American Southeast. Breeding program accessions are from the region with lowest observed genetic variation. CONCLUSIONS: This prairie species did not originate within the prairie. Breeding may be improved by including accessions from outside of the germplasm founding region. The geographic structuring and the identified targets and drivers of adaptation can guide collecting efforts toward populations with beneficial agronomic traits

    Extensive chloroplast genome rearrangement amongst three closely related Halamphora spp. (Bacillariophyceae), and evidence for rapid evolution as compared to land plants.

    No full text
    Diatoms are the most diverse lineage of algae, but the diversity of their chloroplast genomes, particularly within a genus, has not been well documented. Herein, we present three chloroplast genomes from the genus Halamphora (H. americana, H. calidilacuna, and H. coffeaeformis), the first pennate diatom genus to be represented by more than one species. Halamphora chloroplast genomes ranged in size from ~120 to 150 kb, representing a 24% size difference within the genus. Differences in genome size were due to changes in the length of the inverted repeat region, length of intergenic regions, and the variable presence of ORFs that appear to encode as-yet-undescribed proteins. All three species shared a set of 161 core features but differed in the presence of two genes, serC and tyrC of foreign and unknown origin, respectively. A comparison of these data to three previously published chloroplast genomes in the non-pennate genus Cyclotella (Thalassiosirales) revealed that Halamphora has undergone extensive chloroplast genome rearrangement compared to other genera, as well as containing variation within the genus. Finally, a comparison of Halamphora chloroplast genomes to those of land plants indicates diatom chloroplast genomes within this genus may be evolving at least ~4-7 times faster than those of land plants. Studies such as these provide deeper insights into diatom chloroplast evolution and important genetic resources for future analyses

    Lecanora markjohnstonii

    No full text
    corecore