175 research outputs found

    Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphe neurones and cranial motoneurones

    Get PDF
    In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol(-/-) embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further differentiate. In mol(-/-) mutants, expression of Foxa and Hh family genes is not maintained in floorplate cells and lateral expansion of the floorplate fails to occur. Our results suggest that this is due to defects both in the regulation of Hh activity in medial floorplate cells as well as cell-autonomous requirements for Foxa2 in the prospective laterally positioned floorplate cells themselves. Foxa2 is also required for induction and/or patterning of several distinct cell types in the ventral CNS. Serotonergic neurones of the raphe nucleus and the trochlear motor nucleus are absent in mol(-/-) embryos, and oculomotor and facial motoneurones ectopically occupy ventral CNS midline positions in the midbrain and hindbrain. There is also a severe reduction of prospective oligodendrocytes in the midbrain and hindbrain. Finally, in the absence of Foxa2, at least two likely Hh pathway target genes are ectopically expressed in more dorsal regions of the midbrain and hindbrain ventricular neuroepithelium, raising the possibility that Foxa2 activity may normally be required to limit the range of action of secreted Hh proteins

    High fluoride and low calcium levels in drinking water is associated with low bone mass, reduced bone quality and fragility fractures in sheep

    Get PDF
    SUMMARY: Chronic environmental fluoride exposure under calcium stress causes fragility fractures due to osteoporosis and bone quality deterioration, at least in sheep. Proof of skeletal fluorosis, presenting without increased bone density, calls for a review of fracture incidence in areas with fluoridated groundwater, including an analysis of patients with low bone mass. INTRODUCTION: Understanding the skeletal effects of environmental fluoride exposure especially under calcium stress remains an unmet need of critical importance. Therefore, we studied the skeletal phenotype of sheep chronically exposed to highly fluoridated water in the Kalahari Desert, where livestock is known to present with fragility fractures. METHODS: Dorper ewes from two flocks in Namibia were studied. Chemical analyses of water, blood and urine were executed for both cohorts. Skeletal phenotyping comprised micro-computer tomography (μCT), histological, histomorphometric, biomechanical, quantitative backscattered electron imaging (qBEI) and energy-dispersive X-ray (EDX) analysis. Analysis was performed in direct comparison with undecalcified human iliac crest bone biopsies of patients with fluoride-induced osteopathy. RESULTS: The fluoride content of water, blood and urine was significantly elevated in the Kalahari group compared to the control. Surprisingly, a significant decrease in both cortical and trabecular bones was found in sheep chronically exposed to fluoride. Furthermore, osteoid parameters and the degree and heterogeneity of mineralization were increased. The latter findings are reminiscent of those found in osteoporotic patients with treatment-induced fluorosis. Mechanical testing revealed a significant decrease in the bending strength, concurrent with the clinical observation of fragility fractures in sheep within an area of environmental fluoride exposure. CONCLUSIONS: Our data suggest that fluoride exposure with concomitant calcium deficit (i) may aggravate bone loss via reductions in mineralized trabecular and cortical bone mass and (ii) can cause fragility fractures and (iii) that the prevalence of skeletal fluorosis especially due to groundwater exposure should be reviewed in many areas of the world as low bone mass alone does not exclude fluorosis

    GIS-BASED SUITABILITY MODELLING FOR THE EUROPEAN OYSTER WITHIN THE GERMAN EXCLUSIVE ZONE OF THE NORTH SEA

    Get PDF
    Oyster reefs are ecologically important habitats that have been suffering from anthropogenic stressors and severe damages over the past century. More than 85 % of the world's oyster reefs have already been destroyed, have disappeared or their existence is under severe and immediate threat. Due to their central ecological importance for benthic and bentho-pelagic systems and processes associated with important ecosystem functions and services, the restoration of oyster reefs is a focus of marine conservation measures worldwide. In the context of marine spatial planning and complex land use conflicts, and aimed at maximising the ecological success of such restoration measures, GIS-based habitat suitability analyses for oyster reintroduction have been conducted. The aim of the present study was to model and identify suitable habitats for the European oyster within the marine protected areas of Borkum Reefground and Sylt Outer Reef in the German Bight for which the restoration of biogenic reefs, namely native oyster reefs is a designated measure. For this purpose, a multi-criteria decision analysis was designed and applied. Based on geodata of the ecological habitat preferences of the European oyster and relevant logistic factors (contraindicated uses), suitable large- scale areas were successfully identified for which a reintroduction of the formerly native species is favourable. Both suitable and unsuitable habitats could therefore successfully be identified for both nature reserves. Due to the large impact of different standardisation procedures for the suitability variables applied, corresponding results may differ quite severely. Hence four different classifications were applied on the most important factor, ground fisheries accounting for a relative weighting of ca. 30% in the derived suitability formula. The results undermine the necessity of well-grounded scientific and practical reasons to decide on a suitable classification procedure in the multicriteria analysis

    Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells

    Get PDF
    The viscoelasticity of the crosslinked semiflexible polymer networks—such as the internal cytoskeleton and the extracellular matrix—that provide shape and mechanical resistance against deformation is assumed to dominate tissue mechanics. However, the mechanical responses of soft tissues and semiflexible polymer gels differ in many respects. Tissues stiffen in compression but not in extension1,2,3,4,5, whereas semiflexible polymer networks soften in compression and stiffen in extension6,7. In shear deformation, semiflexible polymer gels stiffen with increasing strain, but tissues do not1,2,3,4,5,6,7,8. Here we use multiple experimental systems and a theoretical model to show that a combination of nonlinear polymer network elasticity and particle (cell) inclusions is essential to mimic tissue mechanics that cannot be reproduced by either biopolymer networks or colloidal particle systems alone. Tissue rheology emerges from an interplay between strain-stiffening polymer networks and volume-conserving cells within them. Polymer networks that soften in compression but stiffen in extension can be converted to materials that stiffen in compression but not in extension by including within the network either cells or inert particles to restrict the relaxation modes of the fibrous networks that surround them. Particle inclusions also suppress stiffening in shear deformation; when the particle volume fraction is low, they have little effect on the elasticity of the polymer networks. However, as the particles become more closely packed, the material switches from compression softening to compression stiffening. The emergence of an elastic response in these composite materials has implications for how tissue stiffness is altered in disease and can lead to cellular dysfunction9,10,11. Additionally, the findings could be used in the design of biomaterials with physiologically relevant mechanical properties

    Triple-negative breast cancer with brain metastases: a comparison between basal-like and non-basal-like biological subtypes

    Get PDF
    The aim of this study was to divide the group of triple-negative breast cancer patients with brain metastases into basal-like and non-basal-like biological subtypes in order to compare clinical features and survival rates in those two groups. A comprehensive analysis of 111 consecutive triple-negative breast cancer patients with brain metastases treated in the years 2003–2009 was performed. In 75 patients, immunohistochemistry was used as a surrogate of microarray in order to evaluate the expression of three basal markers: cytokeratin 5/6 (CK 5/6), EGFR/HER1 and c-KIT. The basal-like (ER/PgR/HER2-negative, CK5/6positive and/or HER1-positive) and non-basal-like (ER/PgR/HER2-negative, CK5/6-negative, HER1-negative) subsets were selected. Clinical features and survivals were compared in both groups. In the group of 111 triple-negative breast cancer patients, median DFS, OS and survival from brain metastases were 20, 29 and 4 months, respectively. In 75 patients who were evaluable for basal markers, median DFS, OS and survival from brain metastases were 18, 26 and 3.2 months, respectively. In the basal-like subtype, the survival rates were 15, 26 and 3 months, respectively, and in the non-basal-like subtypes, they were 20, 30 and 2.8 months, respectively. No statistically significant differences in survivals were detected between the basal-like and non-basal-like biological subtypes. Factors influencing survival from brain metastases were: Karnofsky performance status (KPS), the status of extracranial disease and age. Biological markers differentiating triple-negative group into basal-like and non-basal-like subtype (CK 5/6, HER1, c-KIT) had no influence on survival. In patients with triple-negative breast cancer and brain metastases, well-known clinical, but not molecular, features correlated with survival

    Mechanosensing is critical for axon growth in the developing brain.

    Get PDF
    During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signaling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro, substrate stiffness determined growth patterns of Xenopus retinal ganglion cell axons. In vivo atomic force microscopy revealed a noticeable pattern of stiffness gradients in the embryonic brain. Retinal ganglion cell axons grew toward softer tissue, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo, we altered brain stiffness, blocked mechanotransduction pharmacologically and knocked down the mechanosensitive ion channel piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness, read out by mechanosensitive ion channels, is critically involved in instructing neuronal growth in vivo.This work was supported by the German National Academic Foundation (scholarship to D.E.K.), Wellcome Trust and Cambridge Trusts (scholarships to A.J.T.), Winston Churchill Foundation of the United States (scholarship to S.K.F.), Herchel Smith Foundation (Research Studentship to S.K.F.), CNPq 307333/2013-2 (L.d.F.C.), NAP-PRP-USP and FAPESP 11/50761-2 (L.d.F.C.), UK EPSRC BT grant (J.G.), Wellcome Trust WT085314 and the European Research Council 322817 grants (C.E.H.); an Alexander von Humboldt Foundation Feodor Lynen Fellowship (K.F.), UK BBSRC grant BB/M021394/1 (K.F.), the Human Frontier Science Program Young Investigator Grant RGY0074/2013 (K.F.), the UK Medical Research Council Career Development Award G1100312/1 (K.F.) and the Eunice Kennedy Shriver National Institute Of Child Health & Human Development of the National Institutes of Health under Award Number R21HD080585 (K.F.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via https://doi.org/10.1038/nn.439
    corecore