1,223 research outputs found

    A geometry for optimizing nanoscale magnetic resonance force microscopy

    Get PDF
    We implement magnetic resonance force microscopy (MRFM) in an experimental geometry, where the long axis of the cantilever is normal to both the external magnetic field and the RF microwire source. Measurements are made of the statistical polarization of 1^1H in polystyrene with negligible magnetic dissipation, gradients greater than 10510^5 T/m within 100 nm of the magnetic tip, and rotating RF magnetic fields over 12 mT at 115 MHz. This geometry could facilitate the application of nanometer-scale MRFM to nuclear species with low gyro-magnetic ratios and samples with broadened resonances, such as In spins in quantum dots.Comment: 4 pages, 5 figure

    Boundary between the thermal and statistical polarization regimes in a nuclear spin ensemble

    Get PDF
    As the number of spins in an ensemble is reduced, the statistical uctuations in its polarization eventually exceed the mean thermal polarization. This transition has now been surpassed in a number of recent nuclear magnetic resonance experiments, which achieve nanometer-scale detection volumes. Here, we measure nanometer- scale ensembles of nuclear spins in a KPF6 sample using magnetic resonance force microscopy. In particular, we investigate the transition between regimes dominated by thermal and statistical nuclear polarization. The ratio between the two types of polarization provides a measure of the number of spins in the detected ensemble

    Antiferromagnetic s-d exchange coupling in GaMnAs

    Full text link
    Measurements of coherent electron spin dynamics in Ga(1-x)Mn(x)As/Al(0.4)Ga(0.6)As quantum wells with 0.0006% < x < 0.03% show an antiferromagnetic (negative) exchange bewteen s-like conduction band electrons and electrons localized in the d-shell of the Mn2+ impurities. The magnitude of the s-d exchange parameter, N0 alpha, varies as a function of well width indicative of a large and negative contribution due to kinetic exchange. In the limit of no quantum confinement, N0 alpha extrapolates to -0.09 +/- 0.03 eV indicating that antiferromagnetic s-d exchange is a bulk property of GaMnAs. Measurements of the polarization-resolved photoluminescence show strong discrepancy from a simple model of the exchange enhanced Zeeman splitting, indicative of additional complexity in the exchange split valence band.Comment: 5 pages, 4 figures and one action figur

    Spin dynamics in electrochemically charged CdSe quantum dots

    Full text link
    We use time-resolved Faraday rotation to measure coherent spin dynamics in colloidal CdSe quantum dots charged in an electrochemical cell at room temperature. Filling of the 1Se electron level is demonstrated by the bleaching of the 1Se-1S3/2 absorption peak. One of the two Lande g-factors observed in uncharged quantum dots disappears upon filling of the 1Se electron state. The transverse spin coherence time, which is over 1 ns and is limited by inhomogeneous dephasing, also appears to increase with charging voltage. The amplitude of the spin precession signal peaks near the half-filling potential. Its evolution at charging potentials without any observable bleaching of the 1Se-1S3/2 transition suggests that the spin dynamics are influenced by low-energy surface states.Comment: 4 pages, 4 figure

    Force-detected nuclear double resonance between statistical spin polarizations

    Full text link
    We demonstrate nuclear double resonance for nanometer-scale volumes of spins where random fluctuations rather than Boltzmann polarization dominate. When the Hartmann-Hahn condition is met in a cross-polarization experiment, flip-flops occur between two species of spins and their fluctuations become coupled. We use magnetic resonance force microscopy to measure this effect between 1H and 13C spins in 13C-enriched stearic acid. The development of a cross-polarization technique for statistical ensembles adds an important tool for generating chemical contrast in nanometer-scale magnetic resonance.Comment: 14 pages, 4 figure

    Nuclear spin relaxation induced by a mechanical resonator

    Full text link
    We report on measurements of the spin lifetime of nuclear spins strongly coupled to a micromechanical cantilever as used in magnetic resonance force microscopy. We find that the rotating-frame correlation time of the statistical nuclear polarization is set by the magneto-mechanical noise originating from the thermal motion of the cantilever. Evidence is based on the effect of three parameters: (1) the magnetic field gradient (the coupling strength), (2) the Rabi frequency of the spins (the transition energy), and (3) the temperature of the low-frequency mechanical modes. Experimental results are compared to relaxation rates calculated from the spectral density of the magneto-mechanical noise.Comment: 4 pages, 4 figure

    Force-detected nuclear magnetic resonance: Recent advances and future challenges

    Get PDF
    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity -- and perhaps -- to 3D microscopy of molecules with atomic resolution.Comment: 15 pages & 11 figure

    Measurement of statistical nuclear spin polarization in a nanoscale GaAs sample

    Get PDF
    We measure the statistical polarization of quadrupolar nuclear spins in a sub-micrometer (0.6 um^3) particle of GaAs using magnetic resonance force microscopy. The crystalline sample is cut out of a GaAs wafer and attached to a micro-mechanical cantilever force sensor using a focused ion beam technique. Nuclear magnetic resonance is demonstrated on ensembles containing less than 5 x 10^8 nuclear spins and occupying a volume of around (300 nm)^3 in GaAs with reduced volumes possible in future experiments. We discuss how the further reduction of this detection volume will bring the spin ensemble into a regime where random spin fluctuations, rather than Boltzmann polarization, dominate its dynamics. The detection of statistical polarization in GaAs therefore represents an important first step toward 3D magnetic resonance imaging of III-V materials on the nanometer-scale.Comment: 20 pages, 6 figures, 1 supplementary fil

    Quantum information storage and state transfer based on spin systems

    Get PDF
    The idea of quantum state storage is generalized to describe the coherent transfer of quantum information through a coherent data bus. In this universal framework, we comprehensively review our recent systematical investigations to explore the possibility of implementing the physical processes of quantum information storage and state transfer by using quantum spin systems, which may be an isotropic antiferromagnetic spin ladder system or a ferromagnetic Heisenberg spin chain. Our studies emphasize the physical mechanisms and the fundamental problems behind the various protocols for the storage and transfer of quantum information in solid state systems.Comment: 11 pages, 9 figures, Review article on the quantum spin based quantum information processing, to appear the special issue of Low Temperature Physics dedicated to the 70-th anniversary of creation of concept "antiferromagnetism" in physics of magnetis
    corecore