45 research outputs found

    Demographic and clinical characteristics associated with glomerular filtration rates in living kidney donors

    Get PDF
    Due to the shortage of organs, living donor acceptance criteria are becoming less stringent. An accurate determination of the glomerular filtration rate (GFR) is critical in the evaluation of living kidney donors and a value exceeding 80 ml/min per 1.73 m2 is usually considered suitable. To improve strategies for kidney donor screening, an understanding of factors that affect GFR is needed. Here we studied the relationships between donor GFR measured by 125I-iothalamate clearances (mGFR) and age, gender, race, and decade of care in living kidney donors evaluated at the Cleveland Clinic from 1972 to 2005. We report the normal reference ranges for 1057 prospective donors (56% female, 11% African American). Females had slightly higher mGFR than males after adjustment for body surface area, but there were no differences due to race. The lower limit of normal for donors (5th percentile) was less than 80 ml/min per 1.73 m2 for females over age 45 and for males over age 40. We found a significant doubling in the rate of GFR decline in donors over age 45 as compared to younger donors. The age of the donors and body mass index increased over time, but their mGFR, adjusted for body surface area, significantly declined by 1.49±0.61 ml/min per 1.73 m2 per decade of testing. Our study shows that age and gender are important factors determining normal GFR in living kidney donors

    A New Panel-Estimated GFR, Including beta(2)-Microglobulin and beta-Trace Protein and Not Including Race, Developed in a Diverse Population

    Get PDF
    RATIONALE AND OBJECTIVE: GFR estimation based on creatinine and cystatin C (eGFR(cr-cys)) is more accurate than eGFR based on either creatinine or cystatin C alone (eGFR(cr) or eGFR(cys)), but the inclusion of creatinine in eGFR(cr-cys) requires specification of a person’s race. Beta-2-microglobulin (B2M) and beta-trace protein (BTP) are alternative filtration markers that appear to be less influenced by race than creatinine. STUDY DESIGN: Study of diagnostic test accuracy. SETTING AND PARTICIPANTS: Development in pooled population of seven studies with 5017 participants with and without chronic kidney disease. External validation in a pooled population of seven other studies with 2245 participants. TESTS COMPARED: Panel eGFR using B2M and BTP in addition to cystatin C (three-marker panel) or creatinine and cystatin C (four-marker panel) with and without age and sex or race. OUTCOMES: GFR measured as the urinary clearance of iothalamate, plasma clearance of iohexol, or plasma clearance of Cr-EDTA RESULTS: Mean measured GFR was 58.1 and 83.2 ml/min/1.73m(2) and the proportion of blacks was 38.6% and 24.0%, in the development and validation populations, respectively. In development, addition of age and sex improved the performance of all equations compared to equations without age and sex, but addition of race did not further improve the performance. In validation, the four-marker panels were more accurate than the three-marker panels (p<0.001). The three-marker panel without race was more accurate than eGFR(cys) [1- P(30) of 15.6 vs 17.4% (p=0.014)], and the four-marker panel without race was as accurate as eGFR(cr-cys) [1- P(30) of 8.6 vs 9.4% (p=0.17)]. Results were generally consistent across subgroups. LIMITATIONS: No representation of participants with severe comorbid illness and from geographic areas outside of North America and Europe. CONCLUSIONS: The four-marker panel eGFR is as accurate as eGFR(cr-cys), without requiring specification of race. A more accurate race-free eGFR could be an important advance

    Cell-Free DNA and Active Rejection in Kidney Allografts

    Get PDF
    Histologic analysis of the allograft biopsy specimen is the standard method used to differentiate rejection from other injury in kidney transplants. Donor-derived cell-free DNA (dd-cfDNA) is a noninvasive test of allograft injury that may enable more frequent, quantitative, and safer assessment of allograft rejection and injury status. To investigate this possibility, we prospectively collected blood specimens at scheduled intervals and at the time of clinically indicated biopsies. In 102 kidney recipients, we measured plasma levels of dd-cfDNA and correlated the levels with allograft rejection status ascertained by histology in 107 biopsy specimens. The dd-cfDNA level discriminated between biopsy specimens showing any rejection (T cell-mediated rejection or antibody-mediated rejection [ABMR]) and controls (no rejection histologically), P1% indicate a probability of active rejection

    Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: A multicenter prospective study

    Get PDF
    107noNonalcoholic fatty liver disease (NAFLD) represents the hepatic manifestation of metabolic syndrome and may evolve into hepatocellular carcinoma (HCC). Only scanty clinical information is available on HCC in NAFLD. The aim of this multicenter observational prospective study was to assess the clinical features of patients with NAFLD-related HCC (NAFLD-HCC) and to compare them to those of hepatitis C virus (HCV)-related HCC. A total of 756 patients with either NAFLD (145) or HCV-related chronic liver disease (611) were enrolled in secondary care Italian centers. Survival was modeled according to clinical parameters, lead-time bias, and propensity analysis. Compared to HCV, HCC in NAFLD patients had a larger volume, showed more often an infiltrative pattern, and was detected outside specific surveillance. Cirrhosis was present in only about 50% of NAFLD-HCC patients, in contrast to the near totality of HCV-HCC. Regardless of tumor stage, survival was significantly shorter (P = 0.017) in patients with NAFLD-HCC, 25.5 months (95% confidence interval 21.9-29.1), than in those with HCV-HCC, 33.7 months (95% confidence interval 31.9-35.4). To eliminate possible confounders, a propensity score analysis was performed, which showed no more significant difference between the two groups. Additionally, analysis of patients within Milan criteria submitted to curative treatments did not show any difference in survival between NAFLD-HCC and HCV-HCC (respectively, 38.6 versus 41.0 months, P = nonsignificant) Conclusions: NAFLD-HCC is more often detected at a later tumor stage and could arise also in the absence of cirrhosis, but after patient matching, it has a similar survival rate compared to HCV infection; a future challenge will be to identify patients with NAFLD who require more stringent surveillance in order to offer the most timely and effective treatment. (Hepatology 2016;63:827-838)openopenPiscaglia F.; Svegliati-Baroni G.; Barchetti A.; Pecorelli A.; Marinelli S.; Tiribelli C.; Bellentani S.; Bernardi M.; Biselli M.; Caraceni P.; Domenicali M.; Garuti F.; Gramenzi A.; Lenzi B.; Magalotti D.; Cescon M.; Ravaioli M.; Del Poggio P.; Olmi S.; Rapaccini G.L.; Balsamo C.; Di Nolfo M.A.; Vavassori E.; Alberti A.; Benvegnau L.; Gatta A.; Giacomin A.; Vanin V.; Pozzan C.; Maddalo G.; Giampalma E.; Cappelli A.; Golfieri R.; Mosconi C.; Renzulli M.; Roselli P.; Dell'isola S.; Ialungo A.M.; Risso D.; Marenco S.; Sammito G.; Bruzzone L.; Bosco G.; Grieco A.; Pompili M.; Rinninella E.; Siciliano M.; Chiaramonte M.; Guarino M.; Camma C.; Maida M.; Costantino A.; Barcellona M.R.; Schiada L.; Gemini S.; Lanzi A.; Stefanini G.F.; Dall'aglio A.C.; Cappa F.M.; Suzzi A.; Mussetto A.; Treossi O.; Missale G.; Porro E.; Mismas V.; Vivaldi C.; Bolondi L.; Zoli M.; Granito A.; Malagotti D.; Tovoli F.; Trevisani F.; Venerandi L.; Brandi G.; Cucchetti A.; Bugianesi E.; Vanni E.; Mezzabotta L.; Cabibbo G.; Petta S.; Fracanzani A.; Fargion S.; Marra F.; Fani B.; Biasini E.; Sacco R.; Morisco F.; Caporaso N.; Colombo M.; D'ambrosio R.; Croce L.S.; Patti R.; Giannini E.G.; Loria P.; Lonardo A.; Baldelli E.; Miele L.; Farinati F.; Borzio M.; Dionigi E.; Soardo G.; Caturelli E.; Ciccarese F.; Virdone R.; Affronti A.; Foschi F.G.; Borzio F.Piscaglia, F.; Svegliati-Baroni, G.; Barchetti, A.; Pecorelli, A.; Marinelli, S.; Tiribelli, C.; Bellentani, S.; Bernardi, M.; Biselli, M.; Caraceni, P.; Domenicali, M.; Garuti, F.; Gramenzi, A.; Lenzi, B.; Magalotti, D.; Cescon, M.; Ravaioli, M.; Del Poggio, P.; Olmi, S.; Rapaccini, G. L.; Balsamo, C.; Di Nolfo, M. A.; Vavassori, E.; Alberti, A.; Benvegnau, L.; Gatta, A.; Giacomin, A.; Vanin, V.; Pozzan, C.; Maddalo, G.; Giampalma, E.; Cappelli, A.; Golfieri, R.; Mosconi, C.; Renzulli, M.; Roselli, P.; Dell'Isola, S.; Ialungo, A. M.; Risso, D.; Marenco, S.; Sammito, G.; Bruzzone, L.; Bosco, G.; Grieco, A.; Pompili, M.; Rinninella, E.; Siciliano, M.; Chiaramonte, M.; Guarino, M.; Camma, C.; Maida, M.; Costantino, A.; Barcellona, M. R.; Schiada, L.; Gemini, S.; Lanzi, A.; Stefanini, G. F.; Dall'Aglio, A. C.; Cappa, F. M.; Suzzi, A.; Mussetto, A.; Treossi, O.; Missale, G.; Porro, E.; Mismas, V.; Vivaldi, C.; Bolondi, L.; Zoli, M.; Granito, A.; Malagotti, D.; Tovoli, F.; Trevisani, F.; Venerandi, L.; Brandi, G.; Cucchetti, A.; Bugianesi, E.; Vanni, E.; Mezzabotta, L.; Cabibbo, G.; Petta, S.; Fracanzani, A.; Fargion, S.; Marra, F.; Fani, B.; Biasini, E.; Sacco, R.; Morisco, F.; Caporaso, N.; Colombo, M.; D'Ambrosio, R.; Croce, L. S.; Patti, R.; Giannini, E. G.; Loria, P.; Lonardo, A.; Baldelli, E.; Miele, L.; Farinati, F.; Borzio, M.; Dionigi, E.; Soardo, G.; Caturelli, E.; Ciccarese, F.; Virdone, R.; Affronti, A.; Foschi, F. G.; Borzio, F

    APOL1 Genotype and Renal Function of Black Living Donors

    No full text
    Black living kidney donors are at higher risk of developing kidney disease than white donors. We examined the effect of the high-risk genotype on postdonation renal function in black living kidney donors and evaluated whether this genotype alters the association between donation and donor outcome. We grouped 136 black living kidney donors as high-risk (two risk alleles; =19; 14%) or low-risk (one or zero risk alleles; =117; 86%) genotype. Predonation characteristics were similar between groups, except for lower mean±SD baseline eGFR (CKD-EPI equation) in donors with the high-risk genotype (98±17 versus 108±20 ml/min per 1.73 m ; =0.04). At a median of 12 years after donation, donors with the high-risk genotype had lower eGFR (57±18 versus 67±15 ml/min per 1.73 m ; =0.02) and faster decline in eGFR after adjusting for predonation eGFR (1.19; 95% confidence interval, 0 to 2.3 versus 0.4; 95% confidence interval, 0.1 to 0.7 ml/min per 1.73 m per year, =0.02). Two donors developed ESRD; both carried the high-risk genotype. In a subgroup of 115 donors matched to 115 nondonors by genotype, we did not find a difference between groups in the rate of eGFR decline ( =0.39) or any statistical interaction by status ( =0.92). In conclusion, high-risk genotype in black living kidney donors associated with greater decline in postdonation kidney function. Trajectory of renal function was similar between donors and nondonors. The association between high-risk genotype and poor renal outcomes in kidney donors requires validation in a larger study

    Performance of Creatinine-Based GFR Estimating Equations in Solid-Organ Transplant Recipients

    No full text
    Background: Accurate assessment of kidney function is important for the management of solid-organ transplant recipients. In other clinical populations, glomerular filtration rate (GFR) most commonly is estimated using the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) creatinine or the 4-variable MDRD (Modification of Diet in Renal Disease) Study equation. The accuracy of these equations compared with other GFR estimating equations in transplant recipients has not been carefully studied. Study Design: Diagnostic test study. Setting & Participants: Solid-organ transplant recipients longer than 6 months posttransplantation from 5 clinical populations (N -3,622, including recipients of kidney [53%], liver [35%], and other or multiple organs [12%]). Index Test: Estimated GFR (eGFR) using creatinine-based GFR estimating equations identified from a systematic review of the literature. Performance of the CKD-EPI creatinine and the MDRD Study equations was compared with alternative equations. Reference Test: Measured GFR (mGFR) from urinary clearance of iothalamate or plasma clearance of iohexol. Measurements: Error (difference between mGFR and eGFR) expressed as P-30 (proportion of absolute percent error, 30%) and mean absolute error. Results: We identified 26 GFR estimating equations. Mean mGFR was 55.1 +/- 22.7 (SD) mL/min/1.73 m (2). P30 and mean absolute error for the CKD-EPI and the MDRD Study equations were 78.9% (99.6% CI, 76.9%-80.8%) for both and 10.6 (99.6% CI, 10.1-11.1) versus 11.0 (99.6% CI, 10.5-11.5) mL/min/1.73 m(2), respectively; these equations were more accurate than any of the alternative equations (P, 0.001 for all pairwise comparisons for both measures). They performed better than or as well as the alternative equations in most subgroups defined by demographic and clinical characteristics, including type of transplanted organ. Limitations: Study population included few nonwhites and people with solid-organ transplants other than liver and kidneys. Conclusions: The CKD-EPI creatinine and the MDRD Study equations perform better than the alternative creatinine-based estimating equations in solid-organ transplant recipients. They can be used for clinical management. (C) 2014 by the National Kidney Foundation,Inc
    corecore