1,285 research outputs found

    Biologically Plausible Neural Circuits for Realization of Maximum Operations

    Get PDF
    Object recognition in the visual cortex is based on a hierarchical architecture, in which specialized brain regions along the ventral pathway extract object features of increasing levels of complexity, accompanied by greater invariance in stimulus size, position, and orientation. Recent theoretical studies postulate a non-linear pooling function, such as the maximum (MAX) operation could be fundamental in achieving such invariance. In this paper, we are concerned with neurally plausible mechanisms that may be involved in realizing the MAX operation. Four canonical circuits are proposed, each based on neural mechanisms that have been previously discussed in the context of cortical processing. Through simulations and mathematical analysis, we examine the relative performance and robustness of these mechanisms. We derive experimentally verifiable predictions for each circuit and discuss their respective physiological considerations

    Quantum dot opto-mechanics in a fully self-assembled nanowire

    Get PDF
    We show that fully self-assembled optically-active quantum dots (QDs) embedded in MBE-grown GaAs/AlGaAs core-shell nanowires (NWs) are coupled to the NW mechanical motion. Oscillations of the NW modulate the QD emission energy in a broad range exceeding 14 meV. Furthermore, this opto-mechanical interaction enables the dynamical tuning of two neighboring QDs into resonance, possibly allowing for emitter-emitter coupling. Both the QDs and the coupling mechanism -- material strain -- are intrinsic to the NW structure and do not depend on any functionalization or external field. Such systems open up the prospect of using QDs to probe and control the mechanical state of a NW, or conversely of making a quantum non-demolition readout of a QD state through a position measurement.Comment: 20 pages, 6 figure

    Magnetization reversal of an individual exchange biased permalloy nanotube

    Get PDF
    We investigate the magnetization reversal mechanism in an individual permalloy (Py) nanotube (NT) using a hybrid magnetometer consisting of a nanometer-scale SQUID (nanoSQUID) and a cantilever torque sensor. The Py NT is affixed to the tip of a Si cantilever and positioned in order to optimally couple its stray flux into a Nb nanoSQUID. We are thus able to measure both the NT's volume magnetization by dynamic cantilever magnetometry and its stray flux using the nanoSQUID. We observe a training effect and temperature dependence in the magnetic hysteresis, suggesting an exchange bias. We find a low blocking temperature TB=18±2T_B = 18 \pm 2 K, indicating the presence of a thin antiferromagnetic native oxide, as confirmed by X-ray absorption spectroscopy on similar samples. Furthermore, we measure changes in the shape of the magnetic hysteresis as a function of temperature and increased training. These observations show that the presence of a thin exchange-coupled native oxide modifies the magnetization reversal process at low temperatures. Complementary information obtained via cantilever and nanoSQUID magnetometry allows us to conclude that, in the absence of exchange coupling, this reversal process is nucleated at the NT's ends and propagates along its length as predicted by theory.Comment: 8 pages, 4 figure

    The Numerical Electromagnetics Code (NEC) - a brief history

    Full text link
    The Numerical Electromagnetics Code, NEC as it is commonly known, continues to be one of the more widely used antenna modeling codes in existence. With several versions in use that reflect different levels of capability and availability, there are now 450 copies of NEC4 and 250 copies of NEC3 that have been distributed by Lawrence Livermore National Laboratory to a limited class of qualified recipients, and several hundred copies of NEC2 that had a recorded distribution by LLNL. These numbers do not account for numerous copies (perhaps 1000s) that were acquired through other means capitalizing on the open source code, the absence of distribution controls prior to NEC3 and the availability of versions on the Internet. In this paper we briefly review the history of the code that is concisely displayed in Figure 1. We will show how it capitalized on the research of prominent contributors in the early days of computational electromagnetics, how a combination of events led to the tri-service-supported code development program that ultimately led to NEC and how it evolved to the present day product. The authors apologize that space limitations do not allow us to provide a list of references or to acknowledge the numerous contributors to the code both of which can be found in the code documents

    New nonrenormalization theorems for anomalous three point functions

    Full text link
    Nonrenormalization theorems involving the transverse, i.e. non anomalous, part of the correlator in perturbative QCD are proven. Some of their consequences and questions they raise are discussed.Comment: 14 pages. People added in the acknowledgements. Minor changes to match version to appear in journa
    • …
    corecore