141 research outputs found
Cytosolic thioredoxin reductase 1 is required for correct disulfide formation in the ER
Folding of proteins entering the secretory pathway in mammalian cells frequently requires the insertion of disulfide bonds. Disulfide insertion can result in covalent linkages found in the native structure as well as those that are not, so‐called non‐native disulfides. The pathways for disulfide formation are well characterized, but our understanding of how non‐native disulfides are reduced so that the correct or native disulfides can form is poor. Here, we use a novel assay to demonstrate that the reduction in non‐native disulfides requires NADPH as the ultimate electron donor, and a robust cytosolic thioredoxin system, driven by thioredoxin reductase 1 (TrxR1 or TXNRD1). Inhibition of this reductive pathway prevents the correct folding and secretion of proteins that are known to form non‐native disulfides during their folding. Hence, we have shown for the first time that mammalian cells have a pathway for transferring reducing equivalents from the cytosol to the ER, which is required to ensure correct disulfide formation in proteins entering the secretory pathway
Calculation of the free-free transitions in the electron-hydrogen scattering S-wave model
The S-wave model of electron-hydrogen scattering is evaluated using the
convergent close-coupling method with an emphasis on scattering from excited
states including an initial state from the target continuum. Convergence is
found for discrete excitations and the elastic free-free transition. The latter
is particularly interesting given the corresponding potential matrix elements
are divergent
The histone deacetylase complex MiDAC regulates a neurodevelopmental gene expression program to control neurite outgrowth
The mitotic deacetylase complex (MiDAC) is a recently identified histone deacetylase (HDAC) complex. While other HDAC complexes have been implicated in neurogenesis, the physiological role of MiDAC remains unknown. Here, we show that MiDAC constitutes an important regulator of neural differentiation. We demonstrate that MiDAC functions as a modulator of a neurodevelopmental gene expression program and binds to important regulators of neurite outgrowth. MiDAC upregulates gene expression of pro-neural genes such as those encoding the secreted ligands SLIT3 and NETRIN1 (NTN1) by a mechanism suggestive of H4K20ac removal on promoters and enhancers. Conversely, MiDAC inhibits gene expression by reducing H3K27ac on promoter-proximal and -distal elements of negative regulators of neurogenesis. Furthermore, loss of MiDAC results in neurite outgrowth defects that can be rescued by supplementation with SLIT3 and/or NTN1. These findings indicate a crucial role for MiDAC in regulating the ligands of the SLIT3 and NTN1 signaling axes to ensure the proper integrity of neurite development
Genome-Wide Gene Expression Analysis in Response to Organophosphorus Pesticide Chlorpyrifos and Diazinon in C. elegans
Organophosphorus pesticides (OPs) were originally designed to affect the nervous system by inhibiting the enzyme acetylcholinesterase, an important regulator of the neurotransmitter acetylcholine. Over the past years evidence is mounting that these compounds affect many other processes. Little is known, however, about gene expression responses against OPs in the nematode Caenorhabditis elegans. This is surprising because C. elegans is extensively used as a model species in toxicity studies. To address this question we performed a microarray study in C. elegans which was exposed for 72 hrs to two widely used Ops, chlorpyrifos and diazinon, and a low dose mixture of these two compounds. Our analysis revealed transcriptional responses related to detoxification, stress, innate immunity, and transport and metabolism of lipids in all treatments. We found that for both compounds as well as in the mixture, these processes were regulated by different gene transcripts. Our results illustrate intense, and unexpected crosstalk between gene pathways in response to chlorpyrifos and diazinon in C. elegans
Engineering bacteria to solve the Burnt Pancake Problem
<p>Abstract</p> <p>Background</p> <p>We investigated the possibility of executing DNA-based computation in living cells by engineering <it>Escherichia coli </it>to address a classic mathematical puzzle called the Burnt Pancake Problem (BPP). The BPP is solved by sorting a stack of distinct objects (pancakes) into proper order and orientation using the minimum number of manipulations. Each manipulation reverses the order and orientation of one or more adjacent objects in the stack. We have designed a system that uses site-specific DNA recombination to mediate inversions of genetic elements that represent pancakes within plasmid DNA.</p> <p>Results</p> <p>Inversions (or "flips") of the DNA fragment pancakes are driven by the <it>Salmonella typhimurium </it>Hin/<it>hix </it>DNA recombinase system that we reconstituted as a collection of modular genetic elements for use in <it>E. coli</it>. Our system sorts DNA segments by inversions to produce different permutations of a promoter and a tetracycline resistance coding region; <it>E. coli </it>cells become antibiotic resistant when the segments are properly sorted. Hin recombinase can mediate all possible inversion operations on adjacent flippable DNA fragments. Mathematical modeling predicts that the system reaches equilibrium after very few flips, where equal numbers of permutations are randomly sorted and unsorted. Semiquantitative PCR analysis of <it>in vivo </it>flipping suggests that inversion products accumulate on a time scale of hours or days rather than minutes.</p> <p>Conclusion</p> <p>The Hin/<it>hix </it>system is a proof-of-concept demonstration of <it>in vivo </it>computation with the potential to be scaled up to accommodate larger and more challenging problems. Hin/<it>hix </it>may provide a flexible new tool for manipulating transgenic DNA <it>in vivo</it>.</p
Investigation of in vitro effects of ethephon and chlorpyrifos, either alone or in combination, on rat intestinal muscle contraction
A range of pesticides is widely used in pest management and the chances of exposure to multiple organophosphorus (OP) compounds simultaneously are high, especially from dietary and other sources. Although health hazards of individual OP insecticides have been relatively well characterized, there is lesser information on the interactive toxicity of multiple OP insecticides. The aim of this study is to elicit the possible interactions in case combined exposure of an OP pesticide chlorpyrifos (CPF) and a plant growth regulator ethephon (ETF) which are used worldwide. The ileum segments of 3 months old Wistar Albino male rats were used in isolated organ bath containing Tyrode solution. ETF and CPF were incubated (10−7 M concentration) separately or in combination with each other to ileum and their effects on acetylcholine-induced contractions were studied. The data obtained from this study show that, single and combined exposure to the agents caused agonistic interactions with regard to potency of ACh whereas they caused a decrease on Emax value of ACh. These findings suggest that exposure to these agents which have direct and indirect cholinergic effects, may cause developing clinical responses with small doses and earlier but the extent of toxicity will be lower
- …