14 research outputs found

    E3 Ubiquitin Ligases as Immunotherapeutic Target in Atherosclerotic Cardiovascular Disease

    Get PDF
    Chronic low-grade inflammation drives atherosclerosis and despite optimal pharmacological treatment of classical cardiovascular risk factors, one third of the patients with atherosclerotic cardiovascular disease has elevated inflammatory biomarkers. Additional anti-inflammatory strategies to target this residual inflammatory cardiovascular risk are therefore required. T-cells are a dominant cell type in human atherosclerotic lesions. Modulation of T-cell activation is therefore a potential strategy to target inflammation in atherosclerosis. Ubiquitination is an important regulatory mechanism of T-cell activation and several E3 ubiquitin ligases, including casitas B-lineage lymphoma proto-oncogene B (Cbl-B), itchy homolog (Itch), and gene related to anergy in lymphocytes (GRAIL), function as a natural brake on T-cell activation. In this review we discuss recent insights on the role of Cbl-B, Itch, and GRAIL in atherosclerosis and explore the therapeutic potential of these E3 ubiquitin ligases in cardiovascular medicine

    Inhibition of PFKFB3 Hampers the Progression of Atherosclerosis and Promotes Plaque Stability

    Get PDF
    Aims: 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)3-mediated glycolysis is pivotal in driving macrophage- and endothelial cell activation and thereby inflammation. Once activated, these cells play a crucial role in the progression of atherosclerosis. Here, we analyzed the expression of PFKFB3 in human atherosclerotic lesions and investigated the therapeutic potential of pharmacological inhibition of PFKFB3 in experimental atherosclerosis by using the glycolytic inhibitor PFK158. Methods and Results: PFKFB3 expression was higher in vulnerable human atheromatous carotid plaques when compared to stable fibrous plaques and predominantly expressed in plaque macrophages and endothelial cells. Analysis of advanced plaques of human coronary arteries revealed a positive correlation of PFKFB3 expression with necrotic core area. To further investigate the role of PFKFB3 in atherosclerotic disease progression, we treated 6–8 weeks old male Ldlr–/– mice. These mice were fed a high cholesterol diet for 13 weeks, of which they were treated for 5 weeks with the glycolytic inhibitor PFK158 to block PFKFB3 activity. The incidence of fibrous cap atheroma (advanced plaques) was reduced in PFK158-treated mice. Plaque phenotype altered markedly as both necrotic core area and intraplaque apoptosis decreased. This coincided with thickening of the fibrous cap and increased plaque stability after PFK158 treatment. Concomitantly, we observed a decrease in glycolysis in peripheral blood mononuclear cells compared to the untreated group, which alludes that changes in the intracellular metabolism of monocyte and macrophages is advantageous for plaque stabilization. Conclusion: High PFKFB3 expression is associated with vulnerable atheromatous human carotid and coronary plaques. In mice, high PFKFB3 expression is also associated with a vulnerable plaque phenotype, whereas inhibition of PFKFB3 activity leads to plaque stabilization. This data implies that inhibition of inducible glycolysis may reduce inflammation, which has the ability to subsequently attenuate atherogenesis

    Immuno-PET Imaging of Atherosclerotic Plaques with [89Zr]Zr-Anti-CD40 mAb—Proof of Concept

    No full text
    Non-invasive imaging of atherosclerosis can help in the identification of vulnerable plaque lesions. CD40 is a co-stimulatory molecule present on various immune and non-immune cells in the plaques and is linked to inflammation and plaque instability. We hypothesize that a 89Zr-labeled anti-CD40 monoclonal antibody (mAb) tracer has the potential to bind to cells present in atherosclerotic lesions and that CD40 Positron Emission Tomography (PET) can contribute to the detection of vulnerable atherosclerotic plaque lesions. To study this, wild-type (WT) and ApoE−/− mice were fed a high cholesterol diet for 14 weeks to develop atherosclerosis. Mice were injected with [89Zr]Zr-anti-CD40 mAb and the aortic uptake was evaluated and quantified using PET/Computed Tomography (CT) imaging. Ex vivo biodistribution was performed post-PET imaging and the uptake in the aorta was assessed with autoradiography and compared with Oil red O staining to determine the tracer potential to detect atherosclerotic plaques. On day 3 and 7 post injection, analysis of [89Zr]Zr-anti-CD40 mAb PET/CT scans showed a more pronounced aortic signal in ApoE−/− compared to WT mice with an increased aorta-to-blood uptake ratio. Autoradiography revealed [89Zr]Zr-anti-CD40 mAb uptake in atherosclerotic plaque areas in ApoE−/− mice, while no signal was found in WT mice. Clear overlap was observed between plaque areas as identified by Oil red O staining and autoradiography signal of [89Zr]Zr-anti-CD40 mAb in ApoE−/− mice. In this proof of concept study, we showed that PET/CT with [89Zr]Zr-anti-CD40 mAb can detect atherosclerotic plaques. As CD40 is associated with plaque vulnerability, [89Zr]Zr-anti-CD40 mAb has the potential to become a tracer to detect vulnerable atherosclerotic plaques

    E3 Ubiquitin Ligases as Immunotherapeutic Target in Atherosclerotic Cardiovascular Disease

    No full text
    Chronic low-grade inflammation drives atherosclerosis and despite optimal pharmacological treatment of classical cardiovascular risk factors, one third of the patients with atherosclerotic cardiovascular disease has elevated inflammatory biomarkers. Additional anti-inflammatory strategies to target this residual inflammatory cardiovascular risk are therefore required. T-cells are a dominant cell type in human atherosclerotic lesions. Modulation of T-cell activation is therefore a potential strategy to target inflammation in atherosclerosis. Ubiquitination is an important regulatory mechanism of T-cell activation and several E3 ubiquitin ligases, including casitas B-lineage lymphoma proto-oncogene B (Cbl-B), itchy homolog (Itch), and gene related to anergy in lymphocytes (GRAIL), function as a natural brake on T-cell activation. In this review we discuss recent insights on the role of Cbl-B, Itch, and GRAIL in atherosclerosis and explore the therapeutic potential of these E3 ubiquitin ligases in cardiovascular medicine

    Immune checkpoint inhibitor treatment and atherosclerotic cardiovascular disease: An emerging clinical problem

    Get PDF
    Antibody-mediated blockade of co-inhibitory molecules such as cytotoxic T lymphocyte-associated protein 4, PD1 and PDL1 elicits potent antitumor responses and improves the prognosis of many patients with cancer. As these immune checkpoint inhibitors (ICIs) are increasingly prescribed to a diverse patient population, a broad range of adverse effects is emerging. Atherosclerosis, a lipid-driven chronic inflammatory disease of the large arteries, may be aggravated by ICI treatment. In this review, we discuss recent clinical studies that analyze the correlation between ICI use and atherosclerotic cardiovascular disease (CVD). Indeed, several studies report an increased incidence of atherosclerotic CVD after ICI administration, with the occurrence of pathologies such as myocardial infarction, ischemic stroke and coronary artery disease significantly higher after ICI use. Increased awareness and better monitoring of ICI-treated patients can elucidate risk factors that contribute to ICI-induced aggravation of atherosclerosis and identify promising treatment strategies. For now, optimal cardiovascular risk assessment is required to protect ICI-receiving patients and long-term survivors of cancer from the detrimental effects of ICI therapy on atherosclerotic CVD

    Short-term regulation of hematopoiesis by lipoprotein(a) results in the production of pro-inflammatory monocytes

    No full text
    Background: Lipoproteins are important regulators of hematopoietic stem and progenitor cell (HSPC) biology, predominantly affecting myelopoiesis. Since myeloid cells, including monocytes and macrophages, promote the inflammatory response that propagates atherosclerosis, it is of interest whether the atherogenic low-density lipoprotein (LDL)-like particle lipoprotein(a) [Lp(a)] contributes to atherogenesis via stimulating myelopoiesis. Methods & results: To assess the effects of Lp(a)-priming on long-term HSPC behavior we transplanted BM of Lp(a) transgenic mice, that had been exposed to elevated levels of Lp(a), into lethally-irradiated C57Bl6 mice and hematopoietic reconstitution was analyzed. No differences in HSPC populations or circulating myeloid cells were detected ten weeks after transplantation. Likewise, in vitro stimulation of C57Bl6 BM cells for 24 h with Lp(a) did not affect colony formation, total cell numbers or myeloid populations 7 days later. To assess the effects of elevated levels of Lp(a) on myelopoiesis, C57Bl6 bone marrow (BM) cells were stimulated with lp(a) for 24 h, and a marked increase in granulocyte-monocyte progenitors, pro-inflammatory Ly6high monocytes and macrophages was observed. Seven days of continuous exposure to Lp(a) increased colony formation and enhanced the formation of pro-inflammatory monocytes and macrophages. Antibody-mediated neutralization of oxidized phospholipids abolished the Lp(a)-induced effects on myelopoiesis. Conclusion: Lp(a) enhances the production of inflammatory monocytes at the bone marrow level but does not induce cell-intrinsic long-term priming of HSPCs. Given the short-term and direct nature of this effect, we postulate that Lp(a)-lowering treatment has the capacity to rapidly revert this multi-level inflammatory response

    Short-term regulation of hematopoiesis by lipoprotein(a) results in the production of pro-inflammatory monocytes

    No full text
    Background: Lipoproteins are important regulators of hematopoietic stem and progenitor cell (HSPC) biology, predominantly affecting myelopoiesis. Since myeloid cells, including monocytes and macrophages, promote the inflammatory response that propagates atherosclerosis, it is of interest whether the atherogenic low-density lipoprotein (LDL)-like particle lipoprotein(a) [Lp(a)] contributes to atherogenesis via stimulating myelopoiesis. Methods & results: To assess the effects of Lp(a)-priming on long-term HSPC behavior we transplanted BM of Lp(a) transgenic mice, that had been exposed to elevated levels of Lp(a), into lethally-irradiated C57Bl6 mice and hematopoietic reconstitution was analyzed. No differences in HSPC populations or circulating myeloid cells were detected ten weeks after transplantation. Likewise, in vitro stimulation of C57Bl6 BM cells for 24 h with Lp(a) did not affect colony formation, total cell numbers or myeloid populations 7 days later. To assess the effects of elevated levels of Lp(a) on myelopoiesis, C57Bl6 bone marrow (BM) cells were stimulated with lp(a) for 24 h, and a marked increase in granulocyte-monocyte progenitors, pro-inflammatory Ly6high monocytes and macrophages was observed. Seven days of continuous exposure to Lp(a) increased colony formation and enhanced the formation of pro-inflammatory monocytes and macrophages. Antibody-mediated neutralization of oxidized phospholipids abolished the Lp(a)-induced effects on myelopoiesis. Conclusion: Lp(a) enhances the production of inflammatory monocytes at the bone marrow level but does not induce cell-intrinsic long-term priming of HSPCs. Given the short-term and direct nature of this effect, we postulate that Lp(a)-lowering treatment has the capacity to rapidly revert this multi-level inflammatory response

    Immuno-PET Imaging of Atherosclerotic Plaques with [89 Zr]Zr-Anti-CD40 mAb—Proof of Concept

    No full text
    Non-invasive imaging of atherosclerosis can help in the identification of vulnerable plaque lesions. CD40 is a co-stimulatory molecule present on various immune and non-immune cells in the plaques and is linked to inflammation and plaque instability. We hypothesize that a89 Zr-labeled anti-CD40 monoclonal antibody (mAb) tracer has the potential to bind to cells present in atherosclerotic lesions and that CD40 Positron Emission Tomography (PET) can contribute to the detection of vulnerable atherosclerotic plaque lesions. To study this, wild-type (WT) and ApoE−/− mice were fed a high cholesterol diet for 14 weeks to develop atherosclerosis. Mice were injected with [89 Zr]Zr-anti-CD40 mAb and the aortic uptake was evaluated and quantified using PET/Computed Tomography (CT) imaging. Ex vivo biodistribution was performed post-PET imaging and the uptake in the aorta was assessed with autoradiography and compared with Oil red O staining to determine the tracer potential to detect atherosclerotic plaques. On day 3 and 7 post injection, analysis of [89 Zr]Zr-anti-CD40 mAb PET/CT scans showed a more pronounced aortic signal in ApoE−/− compared to WT mice with an increased aorta-to-blood uptake ratio. Autoradiography revealed [89 Zr]Zr-anti-CD40 mAb uptake in atherosclerotic plaque areas in ApoE−/− mice, while no signal was found in WT mice. Clear overlap was observed between plaque areas as identified by Oil red O staining and autoradiography signal of [89 Zr]Zr-anti-CD40 mAb in ApoE−/− mice. In this proof of concept study, we showed that PET/CT with [89 Zr]Zr-anti-CD40 mAb can detect atherosclerotic plaques. As CD40 is associated with plaque vulnerability, [89 Zr]Zr-anti-CD40 mAb has the potential to become a tracer to detect vulnerable atherosclerotic plaques

    Antibody-Mediated Inhibition of CTLA4 Aggravates Atherosclerotic Plaque Inflammation and Progression in Hyperlipidemic Mice

    No full text
    T cell-driven inflammation plays a critical role in the initiation and progression of atherosclerosis. The co-inhibitory protein Cytotoxic T-Lymphocyte Associated protein (CTLA) 4 is an important negative regulator of T cell activation. Here, we studied the effects of the antibody-mediated inhibition of CTLA4 on experimental atherosclerosis by treating 6-8-week-old Ldlr-/- mice, fed a 0.15% cholesterol diet for six weeks, biweekly with 200 μg of CTLA4 antibodies or isotype control for six weeks. 18F-fluorodeoxyglucose Positron Emission Tomography-Computed Tomography showed no effect of the CTLA4 inhibition of activity in the aorta, spleen, and bone marrow, indicating that monocyte/macrophage-driven inflammation was unaffected. Correspondingly, flow cytometry demonstrated that the antibody-mediated inhibition of CTLA4 did not affect the monocyte populations in the spleen. αCTLA4 treatment induced an activated T cell profile, characterized by a decrease in naïve CD44-CD62L+CD4+ T cells and an increase in CD44+CD62L- CD4+ and CD8+ T cells in the blood and lymphoid organs. Furthermore, αCTLA4 treatment induced endothelial activation, characterized by increased ICAM1 expression in the aortic endothelium. In the aortic arch, which mainly contained early atherosclerotic lesions at this time point, αCTLA4 treatment induced a 2.0-fold increase in the plaque area. These plaques had a more advanced morphological phenotype and an increased T cell/macrophage ratio, whereas the smooth muscle cell and collagen content decreased. In the aortic root, a site that contained more advanced plaques, αCTLA4 treatment increased the plaque T cell content. The short-term antibody-mediated inhibition of CTLA4 thus accelerated the progression of atherosclerosis by inducing a predominantly T cell-driven inflammation, and resulted in the formation of plaques with larger necrotic cores and less collagen. This indicates that existing therapies that are based on αCTLA4 antibodies may promote CVD development in patients
    corecore