7 research outputs found

    Adjuvanted trimethyl chitosan based nanoparticle formulations to improve immunogenicity of DNA vaccines

    No full text
    The aim of this thesis was to formulate nanoparticles with DNA plasmid (pDNA), encoding the Mycobacterium tuberculosis (Mtb) antigen 85A. The design of cationic N-trimethylated chitosan (TMC) nanoparticles, adjuvanted with the pattern recognition ligands TLR-9 and NLR-2, is a novel approach for improving DNA vaccines. To provide a potential context for future design of DNA vaccines, important parameters of TMC nanoparticle formulations with pDNA were evaluated and characterized. Successful binding of pDNA to the nanoparticles was confirmed as well as integrity of the secondary structure of pDNA after being released. It was shown that two pattern-recognition ligands co-delivered by nanoparticles synergistically activate innate immune responses in vitro and enhance cell-mediated immune responses in vivo. TMC nanoparticles, formulated with Mtb antigen 85A expressing pDNA, successfully induced robust Th1 immune responses in mice and may render pDNA/TMC nanoparticles a potential vaccine candidate for further investigations of protective efficacy against Mtb infections

    Characterization of pDNA-TMC Nanoparticle Interaction and Stability

    No full text
    Formulation of nanoparticulate DNA vaccines requires the assessment of stability and integrity of the components implicated. Stability of cationic nanoparticles made of N-trimethyl chitosan and chondroitin sulfate (TMC nanoparticles) was investigated in aqueous solution and after freeze-drying by characterization of their size, polydispersity index (PDI), and zeta potential. Furthermore, the structural integrity of plasmid DNA (pDNA) on adsorption to the nanoparticle surface was investigated. Agarose gel electrophoresis showed DNA retention when applied with the nanocarrier, suggesting that pDNA adsorption on nanoparticles took place. In circular dichroism (CD) spectra, ellipticity of pDNA decreased at 280 nm and increased at 245 nm, and the maximum wavelength shifted from 275 nm to 285 nm when nanoparticles were present. Once released from the particles, the secondary structure of the plasmid was retained in its native form. pDNA release from pDNA-TMC nanoparticles was indicated by a rise in zeta potential from initially -32 mV (pDNA adsorbed to particles) to 14 mV during one hour, and to 36 mV after 24 hours. Unloaded TMC nanoparticles remained stable in suspension for 24 hours, maintaining diameters of around 200 nm, and zeta potential values of approximately 38 mV. Freeze-drying with sucrose could ensure storage for 30 days, with minimal increase in size (291 nm) and charge (62 mV). In conclusion, TMC nanoparticles may potentially be freeze-dried in the presence of sucrose to be stored for prolonged periods of time. Furthermore, pDNA was successfully adsorbed to the cationic nanoparticles and remained intact after being released

    Nanocarriers for DNA Vaccines: Co-Delivery of TLR-9 and NLR-2 Ligands Leads to Synergistic Enhancement of Proinflammatory Cytokine Release

    Get PDF
    Adjuvants enhance immunogenicity of vaccines through either targeted antigen delivery or stimulation of immune receptors. Three cationic nanoparticle formulations were evaluated for their potential as carriers for a DNA vaccine, and muramyl dipeptide (MDP) as immunostimulatory agent, to induce and increase immunogenicity of Mycobacterium tuberculosis antigen encoding plasmid DNA (pDNA). The formulations included (1) trimethyl chitosan (TMC) nanoparticles, (2) a squalene-in-water nanoemulsion, and (3) a mineral oil-in-water nanoemulsion. The adjuvant effect of the pDNA-nanocomplexes was evaluated by serum antibody analysis in immunized mice. All three carriers display a strong adjuvant effect, however, only TMC nanoparticles were capable to bias immune responses towards Th1. pDNA naturally contains immunostimulatory unmethylated CpG motifs that are recognized by Toll-like receptor 9 (TLR-9). In mechanistic in vitro studies, activation of TLR-9 and the ability to enhance immunogenicity by simultaneously targeting TLR-9 and NOD-like receptor 2 (NLR-2) was determined by proinflammatory cytokine release in RAW264.7 macrophages. pDNA in combination with MDP was shown to significantly increase proinflammatory cytokine release in a synergistic manner, dependent on NLR-2 activation. In summary, novel pDNA-Ag85A loaded nanoparticle formulations, which induce antigen specific immune responses in mice were developed, taking advantage of the synergistic combinations of TLR and NLR agonists to increase the adjuvanticity of the carriers used

    Multifunctional PLGA-Based Nanoparticles Encapsulating Simultaneously Hydrophilic Antigen and Hydrophobic Immunomodulator for Mucosal Immunization

    No full text
    We describe here the development of nanoparticles made from poly­(lactic-<i>co</i>-glycolic acid) (PLGA) able to deliver an encapsulated antigen with a Toll-Like Receptor-7 (TLR-7) agonist as immunostimulatory signal and coated with a muco-adhesive chitosan-derivate layer. The potential to stimulate an immune response of these vaccine formulations in the absence or presence of the TLR-7 agonist at the systemic and mucosal level were evaluated in mice following subcutaneous or nasal administrations. Intranasally immunized mice developed a high systemic immune response equivalent to mice injected subcutaneously. However, mucosal immune responses were only induced at local and distal sites in mucosally immunized animals. The adjuvant effect of imiquimod on the polarization of the immune response was only detected at local sites, which tends to increase safety of this vaccine delivery system
    corecore