352 research outputs found

    Small Noncoding RNA Expression During Extreme Anoxia Tolerance of Annual Killifish (Austrofundulus limnaeus) Embryos

    Get PDF
    Small noncoding RNAs (sncRNA) have recently emerged as specific and rapid regulators of gene expression, involved in a myriad of cellular and organismal processes. MicroRNAs, a class of sncRNAs, are differentially expressed in diverse taxa in response to environmental stress, including anoxia. In most vertebrates, a brief period of oxygen deprivation results in severe tissue damage or death. Studies on sncRNA and anoxia have focused on these anoxia-sensitive species. Studying sncRNAs in anoxia-tolerant organisms may provide insight into adaptive mechanisms supporting anoxia tolerance. Embryos of the annual killifish Austrofundulus limnaeus are the most anoxia-tolerant vertebrates known, surviving over 100 days at their peak tolerance at 25°C. Their anoxia tolerance and physiology vary over development, such that both anoxia-tolerant and anoxia-sensitive phenotypes comprise the species. This allows for a robust comparison to identify sncRNAs essential to anoxia-tolerance. For this study, RNA sequencing was used to identify and quantify expression of sncRNAs in four embryonic stages of A. limnaeus in response to an exposure to anoxia and subsequent aerobic recovery. Unique stage-specific patterns of expression were identified that correlate with anoxia tolerance. In addition, embryos of A. limnaeus appear to constitutively express stress-responsive miRNAs. Most differentially expressed sncRNAs were expressed at higher levels during recovery. Many novel groups of sncRNAs with expression profiles suggesting a key role in anoxia tolerance were identified, including sncRNAs derived from mitochondrial tRNAs. This global analysis has revealed groups of candidate sncRNAs that we hypothesize support anoxia tolerance

    Embryonic Development of Natural Annual Killifish populations of the genus Austrolebias: Evolutionary parallelism and the role of environment

    Get PDF
    Repeated, independent emergence of the same trait within different phylogenetic lineages is termed parallel evolution. It typically occurs as a result of similar selective pressures. Annual killifish have adapted to survive in the extreme habitat of temporary pools on three continents and present an especially amenable system for studying fundamental principles of evolutionary parallelism. When the pools dry, annual killifish embryos survive through the dry phase in the bottom substrate in a stage of dormancy—a diapause. The diapause is a complex set of three different developmental stages, none of which is obligate, thus leading to a multitude of potential developmental trajectories. While the intricacy of the killifishes\u27 embryonic development has been thoroughly studied in the laboratory, information on their natural development is virtually absent. We hypothesised that the natural development of annual killifishes is largely synchronised and governed by ambient conditions as shown in the lineage of the African genus Nothobranchius. We sampled wild embryo banks of the South American genus Austrolebias, which evolved its diapause independently of the African lineage. We sampled during two consecutive dry seasons, using both longitudinal and snapshot monitoring, and conducted transplant experiments to determine the extent of the evolutionary parallelism and role of the environment in Austrolebias spp. embryo development. Main habitat phases were characterised by largely synchronised embryo banks. Different inter-seasonal or local environmental conditions were reflected in a different developmental profile of the embryo banks, suggesting a high degree of environmental control. We found striking similarity in the habitat phase–embryo stage associations between the two lineages. The diapause in the two annual killifish lineages represents a unique example of evolutionary parallelism, with the analogy manifested in very close detail. We highlight the similarity of the selective forces in the two genera despite the different geographic origins, climate zones and reversed seasonality. The repeatedly occurring strict association of the same developmental stages with the same habitat conditions suggests a limited array of developmental settings that can be applied to cope with the given environmental challenges

    Anoxia Tolerance During Vertebrate Development - Insights from Studies on the Annual Killifish Austrofundulus limnaeus

    Get PDF
    This is chapter 1 from Anoxia -- This book reviews how severe oxygen deprivation affects biological systems - from the molecular to the ecological level. The contributing authors come from diverse regions of the world, which proves the interest in the academic analysis of oxygen deprivation. The diversity in the experimental approach scientists take, in order to understand the influence oxygen deprivation has on living systems, is apparent throughout this book. One of the presented ideas deals with the exploration and examination of the physiological, cellular and genetic characteristics of killifish embryos and nematodes exposed to anoxia. Furthermore, the book includes material on the mechanisms regulating hypoxia and anoxia tolerance and their implications of on human health issues. Finally, new methodologies to examine oxygen deprivation and the impact of human-related activities on oxygen level, within important ecological systems such as Lake Victoria, are presented. There is no doubt that the oxygen molecule is central to every stratum of biological systems

    Mitochondrial DNA Sequence and Lack of Response to Anoxia in the Annual Killifish \u3ci\u3eAustrofundulus limnaeus\u3c/i\u3e

    Get PDF
    The annual killifish Austrofundulus limnaeus inhabits ephemeral ponds in regions of Venezuela, South America. Permanent populations of A. limnaeus are maintained by production of stress-tolerant embryos that are able to persist in the desiccated sediment. Previous work has demonstrated that A. limnaeus have a remarkable ability to tolerate extended periods of anoxia and desiccating conditions. After considering temperature, A. limnaeus embryos have the highest known tolerance to anoxia when compared to any other vertebrate yet studied. Oxygen is completely essential for the process of oxidative phosphorylation by mitochondria, the intracellular organelle responsible for the majority of adenosine triphosphate production. Thus, understanding the unique properties of A. limnaeus mitochondria is of great interest. In this work, we describe the first complete mitochondrial genome (mtgenome) sequence of a single adult A. limnaeus individual and compare both coding and non-coding regions to several other closely related fish mtgenomes. Mitochondrial features were predicted using MitoAnnotator and polyadenylation sites were predicted using RNAseq mapping. To estimate the responsiveness of A. limnaeus mitochondria to anoxia treatment, we measure relative mitochondrial DNA copy number and total citrate synthase activity in both relatively anoxia-tolerant and anoxia-sensitive embryonic stages. Our cross-species comparative approach identifies unique features of ND1, ND5, ND6, and ATPase-6 that may facilitate the unique phenotype of A. limnaeus embryos. Additionally, we do not find evidence for mitochondrial degradation or biogenesis during anoxia/reoxygenation treatment in A. limnaeus embryos, suggesting that anoxia-tolerant mitochondria do not respond to anoxia in a manner similar to anoxia-sensitive mitochondria

    Mechanisms of animal diapause: Recent developments from nematodes, crustaceans, insects, and fish

    Get PDF
    © 2016 the American Physiological Society. Life cycle delays are beneficial for opportunistic species encountering suboptimal environments. Many animals display a programmed arrest of development (diapause) at some stage(s) of their development, and the diapause state may or may not be associated with some degree of metabolic depression. In this review, we will evaluate current advancements in our understanding of the mechanisms responsible for the remarkable phenotype, as well as environmental cues that signal entry and termination of the state. The developmental stage at which diapause occurs dictates and constrains the mechanisms governing diapause. Considerable progress has been made in clarifying proximal mechanisms of metabolic arrest and the signaling pathways like insulin/Foxo that control gene expression patterns. Overlapping themes are also seen in mechanisms that control cell cycle arrest. Evidence is emerging for epigenetic contributions to diapause regulation via small RNAs in nematodes, crustaceans, insects, and fish. Knockdown of circadian clock genes in selected insect species supports the importance of clock genes in the photoperiodic response that cues diapause. A large suite of chaperone-like proteins, expressed during diapause, protects biological structures during long periods of energy-limited stasis. More information is needed to paint a complete picture of how environmental cues are coupled to the signal transduction that initiates the complex diapause phenotype, as well as molecular explanations for how the state is terminated. Excellent examples of molecular memory in postdauer animals have been documented in Caenorhabditis elegans. It is clear that a single suite of mechanisms does not regulate diapause across all species and developmental stages

    Interventionally implanted port catheter systems for hepatic arterial infusion of chemotherapy in patients with primary liver cancer: a phase II-study (NCT00356161)

    Get PDF
    BACKGROUND: Hepatic arterial infusion (HAI) of chemotherapy requires the implantation of a transcatheter application system which is traditionally performed by surgery. This procedure, but particularly the adjacent drug application via pump or port is often hampered by specific complications and device failure. Interventionally implanted port catheter systems (IIPCS) facilitate the commencement of HAI without need for laparatomy, and are associated with favorable complication rates. We here present an evaluation of the most important technical endpoints associated with the use of IIPCS for HAI in patients with primary liver cancers. METHODS: 70 patients (pts) with hepatocellular (HCC, n=33) and biliary tract cancer (BTC, n=37) were enrolled into a phase II -study. Of those, n=43 had recurrent disease and n=31 suffered from liver-predominant UICC-stage IVb. All pts were provided with IIPCSs before being treated with biweekly, intraarterial chemotherapy (oxaliplatin, 5-Flourouracil, folinic acid). The primary objective of the trial was defined as evaluation of device-related complications and port duration. RESULTS: Implantation of port catheters was successful in all patients. Mean treatment duration was 5,8 months, and median duration of port patency was not reached. Disease-progression was the most common reason for treatment discontinuation (44 pts., 63%), followed by chemotherapy-related toxicity (12 pts., 17%), and irreversible device failure (5 pts., 7%). A total of 28 port complications occurred in 21 pts (30%). No unexpected complications were observed. CONCLUSIONS: HAI via interventionally implanted port catheters can be safely applied to patients with primary liver tumors far advanced or/and pretreated

    Elucidating Nature’s Solutions to Heart, Lung, and Blood Diseases and Sleep Disorders

    Get PDF
    Evolution has provided a number of animal species with extraordinary phenotypes. Several of these phenotypes allow species to survive and thrive in environmental conditions that mimic disease states in humans. The study of evolved mechanisms that responsible for these phenotypes may provide insights into the basis of human disease and guide the design of new therapeutic approaches. Examples include species that tolerate acute or chronic hypoxemia like deep-diving mammals and high-altitude inhabitants, as well as those that hibernate and interrupt their development when exposed to adverse environments. The evolved traits exhibited by these animal species involve modifications of common biological pathways that affect metabolic regulation, organ function, antioxidant defenses, and oxygen transport. In 2006, the National Heart, Lung, and Blood Institute (NHLBI) released a funding opportunity announcement to support studies that were designed to elucidate the natural molecular and cellular mechanisms of adaptation in species that tolerate extreme environmental conditions. The rationale for this funding opportunity is detailed in this Special Article, and the specific evolved mechanisms examined in the supported research are described. Also highlighted are past medical advances achieved through the study of animal species that have evolved extraordinary phenotypes as well as the expectations for new understanding of nature’s solutions to heart, lung, blood, and sleep disorders through future research in this area
    • …
    corecore