725 research outputs found
Nematicity as a route to a magnetic field-induced spin density wave order; application to the high temperature cuprates
The electronic nematic order characterized by broken rotational symmetry has
been suggested to play an important role in the phase diagram of the high
temperature cuprates. We study the interplay between the electronic nematic
order and a spin density wave order in the presence of a magnetic field. We
show that a cooperation of the nematicity and the magnetic field induces a
finite coupling between the spin density wave and spin-triplet staggered flux
orders. As a consequence of such a coupling, the magnon gap decreases as the
magnetic field increases, and it eventually condenses beyond a critical
magnetic field leading to a field-induced spin density wave order. Both
commensurate and incommensurate orders are studied, and the experimental
implications of our findings are discussed.Comment: 5 pages, 3 figure
Surprising phenomena in a rich new class of inflationary models
We report on a new class of fast-roll inflationary models. In a huge part of
its parameter space, inflationary perturbations exhibit quite unusual phenomena
such as scalar and tensor modes freezing out at widely different times, as well
as scalar modes reentering the horizon during inflation. In another, narrower
range of parameters, this class of models agrees with observations. One
specific point in parameter space is characterized by extraordinary behavior of
the scalar perturbations. Freeze-out of scalar perturbations as well as
particle production at horizon crossing are absent. Also the behavior of the
perturbations around this quasi-de Sitter background is dual to a quantum field
theory in flat space-time. Finally, the form of the primordial power spectrum
is determined by the interaction between different modes of scalar
perturbations.Comment: 12 pages, 5 figures, 1 table, references + comments added, errors
corrected, conclusions unchanged, version published in JCA
Accelerating black hole in 2+1 dimensions and 3+1 black (st)ring
A C-metric type solution for general relativity with cosmological constant is
presented in 2+1 dimensions. It is interpreted as a three-dimensional black
hole accelerated by a strut. Positive values of the cosmological constant are
admissible too. Some embeddings of this metric in the 3+1 space-time are
considered: accelerating BTZ black string and a black ring where the
gravitational force is sustained by the acceleration.Comment: 12 pages, 2 figures, JHEP 1101:114,201
Chaotic dynamics in preheating after inflation
We study chaotic dynamics in preheating after inflation in which an inflaton
is coupled to another scalar field through an interaction
. We first estimate the size of the quasi-homogeneous
field at the beginning of reheating for large-field inflaton potentials
by evaluating the amplitude of the fluctuations on
scales larger than the Hubble radius at the end of inflation. Parametric
excitations of the field during preheating can give rise to chaos
between two dynamical scalar fields. For the quartic potential (,
) chaos actually occurs for in a
linear regime before which the backreaction of created particles becomes
important. This analysis is supported by several different criteria for the
existence of chaos. For the quadratic potential () the signature of chaos
is not found by the time at which the backreaction begins to work, similar to
the case of the quartic potential with .Comment: 12 pages, 10 figures, Version to appear in Classical and Quantum
Gravit
SO(4) Theory of Competition between Triplet Superconductivity and Antiferromagnetism in Bechgaard Salts
Motivated by recent experiments with Bechgaard salts, we investigate the
competition between antiferromagnetism and triplet superconductivity in quasi
one-dimensional electron systems. We unify the two orders in an SO(4) symmetric
framework, and demonstrate the existence of such symmetry in one-dimensional
Luttinger liquids. SO(4) symmetry, which strongly constrains the phase diagram,
can explain coexistence regions between antiferromagnetic, superconducting, and
normal phases, as observed in (TMTSF)PF. We predict a sharp neutron
scattering resonance in superconducting samples.Comment: 5 pages, 3 figures; Added discussion of applicability of SO(4)
symmetry for strongly anisotropic Fermi liquids; Added reference
DEFROST: A New Code for Simulating Preheating after Inflation
At the end of inflation, dynamical instability can rapidly deposit the energy
of homogeneous cold inflaton into excitations of other fields. This process,
known as preheating, is rather violent, inhomogeneous and non-linear, and has
to be studied numerically. This paper presents a new code for simulating scalar
field dynamics in expanding universe written for that purpose. Compared to
available alternatives, it significantly improves both the speed and the
accuracy of calculations, and is fully instrumented for 3D visualization. We
reproduce previously published results on preheating in simple chaotic
inflation models, and further investigate non-linear dynamics of the inflaton
decay. Surprisingly, we find that the fields do not want to thermalize quite
the way one would think. Instead of directly reaching equilibrium, the
evolution appears to be stuck in a rather simple but quite inhomogeneous state.
In particular, one-point distribution function of total energy density appears
to be universal among various two-field preheating models, and is exceedingly
well described by a lognormal distribution. It is tempting to attribute this
state to scalar field turbulence.Comment: RevTeX 4.0; 16 pages, 9 figure
The vacuum bubbles in de Sitter background and black hole pair creation
We study the possible types of the nucleation of vacuum bubbles. We classify
vacuum bubbles in de Sitter background and present some numerical solutions.
The thin-wall approximation is employed to obtain the nucleation rate and the
radius of vacuum bubbles. With careful analysis we confirm that Parke's formula
is also applicable to the large true vacuum bubbles. The nucleation of the
false vacuum bubble in de Sitter background is also evaluated. The tunneling
process in the potential with degenerate vacua is analyzed as the limiting
cases of the large true vacuum bubble and false vacuum bubble. Next, we
consider the pair creation of black holes in the background of bubble
solutions. We obtain static bubble wall solutions of junction equation with
black hole pair. The masses of created black holes are uniquely determined by
the cosmological constant and surface tension on the wall. Finally, we obtain
the rate of pair creation of black holes.Comment: 3 figures, minor including errors and typos corrected, and refs.
adde
Exact Gravitational Shockwaves and Planckian Scattering on Branes
We obtain a solution describing a gravitational shockwave propagating along a
Randall-Sundrum brane. The interest of such a solution is twofold: on the one
hand, it is the first exact solution for a localized source on a
Randall-Sundrum three-brane. On the other hand, one can use it to study forward
scattering at Planckian energies, including the effects of the continuum of
Kaluza-Klein modes. We map out the different regimes for the scattering
obtained by varying the center-of-mass energy and the impact parameter. We also
discuss exact shockwaves in ADD scenarios with compact extra dimensions.Comment: 19 pages, 3 figures. v2: references added, minor improvements and
small errors correcte
Preheating with Trilinear Interactions: Tachyonic Resonance
We investigate the effects of bosonic trilinear interactions in preheating
after chaotic inflation. A trilinear interaction term allows for the complete
decay of the massive inflaton particles, which is necessary for the transition
to radiation domination. We found that typically the trilinear term is
subdominant during early stages of preheating, but it actually amplifies
parametric resonance driven by the four-legs interaction. In cases where the
trilinear term does dominate during preheating, the process occurs through
periodic tachyonic amplifications with resonance effects, which is so effective
that preheating completes within a few inflaton oscillations. We develop an
analytic theory of this process, which we call tachyonic resonance. We also
study numerically the influence of trilinear interactions on the dynamics after
preheating. The trilinear term eventually comes to dominate after preheating,
leading to faster rescattering and thermalization than could occur without it.
Finally, we investigate the role of non-renormalizable interaction terms during
preheating. We find that if they are present they generally dominate (while
still in a controllable regime) in chaotic inflation models. Preheating due to
these terms proceeds through a modified form of tachyonic resonance.Comment: 19 pages, 10 figures, refs added, published versio
- …