725 research outputs found

    Nematicity as a route to a magnetic field-induced spin density wave order; application to the high temperature cuprates

    Full text link
    The electronic nematic order characterized by broken rotational symmetry has been suggested to play an important role in the phase diagram of the high temperature cuprates. We study the interplay between the electronic nematic order and a spin density wave order in the presence of a magnetic field. We show that a cooperation of the nematicity and the magnetic field induces a finite coupling between the spin density wave and spin-triplet staggered flux orders. As a consequence of such a coupling, the magnon gap decreases as the magnetic field increases, and it eventually condenses beyond a critical magnetic field leading to a field-induced spin density wave order. Both commensurate and incommensurate orders are studied, and the experimental implications of our findings are discussed.Comment: 5 pages, 3 figure

    Surprising phenomena in a rich new class of inflationary models

    Full text link
    We report on a new class of fast-roll inflationary models. In a huge part of its parameter space, inflationary perturbations exhibit quite unusual phenomena such as scalar and tensor modes freezing out at widely different times, as well as scalar modes reentering the horizon during inflation. In another, narrower range of parameters, this class of models agrees with observations. One specific point in parameter space is characterized by extraordinary behavior of the scalar perturbations. Freeze-out of scalar perturbations as well as particle production at horizon crossing are absent. Also the behavior of the perturbations around this quasi-de Sitter background is dual to a quantum field theory in flat space-time. Finally, the form of the primordial power spectrum is determined by the interaction between different modes of scalar perturbations.Comment: 12 pages, 5 figures, 1 table, references + comments added, errors corrected, conclusions unchanged, version published in JCA

    Accelerating black hole in 2+1 dimensions and 3+1 black (st)ring

    Full text link
    A C-metric type solution for general relativity with cosmological constant is presented in 2+1 dimensions. It is interpreted as a three-dimensional black hole accelerated by a strut. Positive values of the cosmological constant are admissible too. Some embeddings of this metric in the 3+1 space-time are considered: accelerating BTZ black string and a black ring where the gravitational force is sustained by the acceleration.Comment: 12 pages, 2 figures, JHEP 1101:114,201

    Chaotic dynamics in preheating after inflation

    Full text link
    We study chaotic dynamics in preheating after inflation in which an inflaton ϕ\phi is coupled to another scalar field χ\chi through an interaction (1/2)g2ϕ2χ2(1/2)g^2\phi^2\chi^2. We first estimate the size of the quasi-homogeneous field χ\chi at the beginning of reheating for large-field inflaton potentials V(ϕ)=V0ϕnV(\phi)=V_0\phi^n by evaluating the amplitude of the χ\chi fluctuations on scales larger than the Hubble radius at the end of inflation. Parametric excitations of the field χ\chi during preheating can give rise to chaos between two dynamical scalar fields. For the quartic potential (n=4n=4, V0=λ/4V_0=\lambda/4) chaos actually occurs for g2/λ<O(10)g^2/\lambda <{\cal O}(10) in a linear regime before which the backreaction of created particles becomes important. This analysis is supported by several different criteria for the existence of chaos. For the quadratic potential (n=2n=2) the signature of chaos is not found by the time at which the backreaction begins to work, similar to the case of the quartic potential with g2/λ≫1g^2/\lambda \gg 1.Comment: 12 pages, 10 figures, Version to appear in Classical and Quantum Gravit

    SO(4) Theory of Competition between Triplet Superconductivity and Antiferromagnetism in Bechgaard Salts

    Full text link
    Motivated by recent experiments with Bechgaard salts, we investigate the competition between antiferromagnetism and triplet superconductivity in quasi one-dimensional electron systems. We unify the two orders in an SO(4) symmetric framework, and demonstrate the existence of such symmetry in one-dimensional Luttinger liquids. SO(4) symmetry, which strongly constrains the phase diagram, can explain coexistence regions between antiferromagnetic, superconducting, and normal phases, as observed in (TMTSF)2_2PF6_6. We predict a sharp neutron scattering resonance in superconducting samples.Comment: 5 pages, 3 figures; Added discussion of applicability of SO(4) symmetry for strongly anisotropic Fermi liquids; Added reference

    DEFROST: A New Code for Simulating Preheating after Inflation

    Full text link
    At the end of inflation, dynamical instability can rapidly deposit the energy of homogeneous cold inflaton into excitations of other fields. This process, known as preheating, is rather violent, inhomogeneous and non-linear, and has to be studied numerically. This paper presents a new code for simulating scalar field dynamics in expanding universe written for that purpose. Compared to available alternatives, it significantly improves both the speed and the accuracy of calculations, and is fully instrumented for 3D visualization. We reproduce previously published results on preheating in simple chaotic inflation models, and further investigate non-linear dynamics of the inflaton decay. Surprisingly, we find that the fields do not want to thermalize quite the way one would think. Instead of directly reaching equilibrium, the evolution appears to be stuck in a rather simple but quite inhomogeneous state. In particular, one-point distribution function of total energy density appears to be universal among various two-field preheating models, and is exceedingly well described by a lognormal distribution. It is tempting to attribute this state to scalar field turbulence.Comment: RevTeX 4.0; 16 pages, 9 figure

    The vacuum bubbles in de Sitter background and black hole pair creation

    Full text link
    We study the possible types of the nucleation of vacuum bubbles. We classify vacuum bubbles in de Sitter background and present some numerical solutions. The thin-wall approximation is employed to obtain the nucleation rate and the radius of vacuum bubbles. With careful analysis we confirm that Parke's formula is also applicable to the large true vacuum bubbles. The nucleation of the false vacuum bubble in de Sitter background is also evaluated. The tunneling process in the potential with degenerate vacua is analyzed as the limiting cases of the large true vacuum bubble and false vacuum bubble. Next, we consider the pair creation of black holes in the background of bubble solutions. We obtain static bubble wall solutions of junction equation with black hole pair. The masses of created black holes are uniquely determined by the cosmological constant and surface tension on the wall. Finally, we obtain the rate of pair creation of black holes.Comment: 3 figures, minor including errors and typos corrected, and refs. adde

    Exact Gravitational Shockwaves and Planckian Scattering on Branes

    Get PDF
    We obtain a solution describing a gravitational shockwave propagating along a Randall-Sundrum brane. The interest of such a solution is twofold: on the one hand, it is the first exact solution for a localized source on a Randall-Sundrum three-brane. On the other hand, one can use it to study forward scattering at Planckian energies, including the effects of the continuum of Kaluza-Klein modes. We map out the different regimes for the scattering obtained by varying the center-of-mass energy and the impact parameter. We also discuss exact shockwaves in ADD scenarios with compact extra dimensions.Comment: 19 pages, 3 figures. v2: references added, minor improvements and small errors correcte

    Preheating with Trilinear Interactions: Tachyonic Resonance

    Get PDF
    We investigate the effects of bosonic trilinear interactions in preheating after chaotic inflation. A trilinear interaction term allows for the complete decay of the massive inflaton particles, which is necessary for the transition to radiation domination. We found that typically the trilinear term is subdominant during early stages of preheating, but it actually amplifies parametric resonance driven by the four-legs interaction. In cases where the trilinear term does dominate during preheating, the process occurs through periodic tachyonic amplifications with resonance effects, which is so effective that preheating completes within a few inflaton oscillations. We develop an analytic theory of this process, which we call tachyonic resonance. We also study numerically the influence of trilinear interactions on the dynamics after preheating. The trilinear term eventually comes to dominate after preheating, leading to faster rescattering and thermalization than could occur without it. Finally, we investigate the role of non-renormalizable interaction terms during preheating. We find that if they are present they generally dominate (while still in a controllable regime) in chaotic inflation models. Preheating due to these terms proceeds through a modified form of tachyonic resonance.Comment: 19 pages, 10 figures, refs added, published versio
    • …
    corecore