151 research outputs found

    Distinct X-chromosome SNVs from some sporadic AD samples

    Get PDF
    Sporadic Alzheimer disease (SAD) is the most prevalent neurodegenerative disorder. With the development of new generation DNA sequencing technologies, additional genetic risk factors have been described. Here we used various methods to process DNA sequencing data in order to gain further insight into this important disease. We have sequenced the exomes of brain samples from SAD patients and non-demented controls. Using either method, we found a higher number of single nucleotide variants (SNVs), from SAD patients, in genes present at the X chromosome. Using the most stringent method, we validated these variants by Sanger sequencing. Two of these gene variants, were found in loci related to the ubiquitin pathway (UBE2NL and ATXN3L), previously do not described as genetic risk factors for SAD

    Thermodynamic assessment of gasification and pyrolysis of marine algae to produce hydrogen-containing gas

    Get PDF
    The article gives a thermodynamic assessment of modes of gasification and pyrolysis of algae of gross formulation C1H1.66O1.4 with obtaining hydrogen gas. The authors investigate the modes of air gasification and pyrolysis of algae at pressures of 0.1 MPa and 1 MPa with varying the fuel excess ratio and temperatures. In the case of gasification at a pressure of 0.1 MPa the hydrogen and carbon monoxide concentration increases with an increase of the fuel excess ratio (φ) from 2 to 10 and at φ = 10 and T = 1000 K reaches 25.95 mole % and 27.84 mole %, respectively. An increase in temperature from 1000 K to 1300 K leads to a decrease in the amount of hydrogen and an increase in carbon monoxide in the gaseous products. An increase in the operating pressure from 0.1 to 1 MPa at a gasification temperature of 1000 K leads to the formation of a small amount of methane (~ up to 5 mole %), a decrease in the mole content of hydrogen and carbon monoxide in the final products, and also to the formation of coke (at φ≥7), which we can use as a target product. The caloric value of the gases produced is higher in the pyrolysis of algae than in its gasification. The pressure increase at 1300 K has almost no effect on the equilibrium composition of the products in the gaseous products

    Ca2+-modulated photoactivatable imaging reveals neuron-astrocyte glutamatergic circuitries within the nucleus accumbens

    Full text link
    Astrocytes are key elements of brain circuits that are involved in different aspects of the neuronal physiology relevant to brain functions. Although much effort is being made to understand how the biology of astrocytes affects brain circuits, astrocytic network heterogeneity and plasticity is still poorly defined. Here, we have combined structural and functional imaging of astrocyte activity recorded in mice using the Ca2+-modulated photoactivatable ratiometric integrator and specific optostimulation of glutamatergic pathways to map the functional neuron-astrocyte circuitries in the nucleus accumbens (NAc). We showed pathway-specific astrocytic responses induced by selective optostimulation of main inputs from the prefrontal cortex, basolateral amygdala, and ventral hippocampus. Furthermore, co-stimulation of glutamatergic pathways induced non-linear Ca2+-signaling integration, revealing integrative properties of NAc astrocytes. All these results demonstrate the existence of specific neuron-astrocyte circuits in the NAc, providing an insight to the understanding of how the NAc integrates information

    Cerebrospinal Fluid Mitochondrial DNA in Rapid and Slow Progressive Forms of Alzheimer's Disease

    Get PDF
    Alzheimer's type dementia (AD) exhibits clinical heterogeneity, as well as differences in disease progression, as a subset of patients with a clinical diagnosis of AD progresses more rapidly (rpAD) than the typical AD of slow progression (spAD). Previous findings indicate that low cerebrospinal fluid (CSF) content of cell-free mitochondrial DNA (cf-mtDNA) precedes clinical signs of AD. We have now investigated the relationship between cf-mtDNA and other biomarkers of AD to determine whether a particular biomarker profile underlies the different rates of AD progression. We measured the content of cf-mtDNA, beta-amyloid peptide 1-42 (A beta), total tau protein (t-tau) and phosphorylated tau (p-tau) in the CSF from a cohort of 95 subjects consisting of 49 controls with a neurologic disorder without dementia, 30 patients with a clinical diagnosis of spAD and 16 patients with rpAD. We found that 37% of controls met at least one AD biomarker criteria, while 53% and 44% of subjects with spAD and rpAD, respectively, did not fulfill the two core AD biomarker criteria: high t-tau and low A beta in CSF. In the whole cohort, patients with spAD, but not with rpAD, showed a statistically significant 44% decrease of cf-mtDNA in CSF compared to control. When the cohort included only subjects selected by A beta and t-tau biomarker criteria, the spAD group showed a larger decrease of cf-mtDNA (69%), whereas in the rpAD group cf-mtDNA levels remained unaltered. In the whole cohort, the CSF levels of cf-mtDNA correlated positively with A beta and negatively with p-tau. Moreover, the ratio between cf-mtDNA and p-tau increased the sensitivity and specificity of spAD diagnosis up to 93% and 94%, respectively, in the biomarker-selected cohort. These results show that the content of cf-mtDNA in CSF correlates with the earliest pathological markers of the disease, A beta and p-tau, but not with the marker of neuronal damage t-tau. Moreover, these findings confirm that low CSF content of cf-mtDNA is a biomarker for the early detection of AD and support the hypothesis that low cf-mtDNA, together with low A beta and high p-tau, constitute a distinctive CSF biomarker profile that differentiates spAD from other neurological disorders

    Thermal decomposition of sulfur brown coal

    Get PDF
    The influence of heating rate, temperature and particle size of sulfur brown coal from the Moscow region on the yield of coke residue and its elemental composition was studied. The results can be useful in choosing a rational way of using the presented coals from the energy and ecology point of view

    Thermogravimetric analysis of gasification and pyrolysis of algae biomass

    Get PDF
    In the present paper, the case of the brown algae Saccharina japonica from Aniva Bay (Sea of Okhotsk, Sakhalin Island) was investigated by a thermogravimetric analysis up to 700°C at different atmospheres. The elemental composition, lower heating value, ash content, and biochar yield of the algae were examined. The analysis showed that carbohydrates like alginate, mannitol, fucoidan, and laminarin were decomposed between 250-350°C, while proteins and lipids were burned out between 500-550°C

    The Armc10/SVH gene: Genome context, regulation of mitochondrial dynamics and protection against Aβ-induced mitochondrial fragmentation

    Full text link
    Mitochondrial function and dynamics are essential for neurotransmission, neural function and neuronal viability. Recently, we showed that the eutherian-specific Armcx gene cluster (Armcx1-6 genes), located in the X chromosome, encodes for a new family of proteins that localise to mitochondria, regulating mitochondrial trafficking. The Armcx gene cluster evolved by retrotransposition of the Armc10 gene mRNA, which is present in all vertebrates and is considered to be the ancestor gene. Here we investigate the genomic organisation, mitochondrial functions and putative neuroprotective role of the Armc10 ancestor gene. The genomic context of the Armc10 locus shows considerable syntenic conservation among vertebrates, and sequence comparisons and CHIP-data suggest the presence of at least three conserved enhancers. We also show that the Armc10 protein localises to mitochondria and that it is highly expressed in the brain. Furthermore, we show that Armc10 levels regulate mitochondrial trafficking in neurons, but not mitochondrial aggregation, by controlling the number of moving mitochondria. We further demonstrate that the Armc10 protein interacts with the KIF5/Miro1-2/Trak2 trafficking complex. Finally, we show that overexpression of Armc10 in neurons prevents A beta-induced mitochondrial fission and neuronal death. Our data suggest both conserved and differential roles of the Armc10/Armcx gene family in regulating mitochondrial dynamics in neurons, and underscore a protective effect of the Armc10 gene against A beta-induced toxicity. Overall, our findings support a further degree of regulation of mitochondrial dynamics in the brain of more evolved mammals

    Neuronal pentraxin 1 negatively regulates excitatory synapse density and synaptic plasticity

    Get PDF
    In mature neurons, the number of synapses is determined by a neuronal activity-dependent dynamic equilibrium between positive and negative regulatory factors. We hypothesized that neuronal pentraxin (NP1), a proapoptotic protein induced by low neuronal activity, could be a negative regulator of synapse density because it is found in dystrophic neurites in Alzheimer's disease-affected brains. Here, we report that knockdown of NP1 increases the number of excitatory synapses and neuronal excitability in cultured rat cortical neurons and enhances excitatory drive and long-term potentiation in the hippocampus of behaving mice. Moreover, we found that NP1 regulates the surface expression of the Kv7.2 subunit of the Kv7 family of potassium channels that control neuronal excitability. Furthermore, pharmacological activation of Kv7 channels prevents, whereas inhibition mimics, the increase in synaptic proteins evoked by the knockdown of NP1. These results indicate that NP1 negatively regulates excitatory synapse number by modulating neuronal excitability and show that NP1 restricts excitatory synaptic plasticity

    Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice

    Get PDF
    Mesenchymal stem cells (MSC) have recently attracted interest as a potential basis for a cell based therapy of AD. We investigated the putative immune-modulatory effects in neuroinflammation of systemic transplantation of MSC into APP/PS1 transgenic mice.10(6) MSC were injected into APP/PS1 mice via the tail vein and histological analysis was performed for microglia and amyloid (pE3-A[beta]) plaque numbers, glial distribution and pE3-A[beta] plaque size. In addition, a biochemical analysis by qPCR for pro-inflammatory, chemoattractant and neurotrophic factors was performed.MSC co-localized with pE3-A[beta] plaques. The effects of transplantation on microglia-associated pathology could be observed after 28 hours. Animals showed a reduction in microglial numbers in the cortex and in size. Gene expression was reduced for TNF-[alpha], IL-6, MCP-1, and for NGF, in MSC recipients. Also, we investigated for the first time and found no changes in expression of IL-10, CCR5, BDNF, VEGF and IFN[gamma]. PTGER2 expression levels were increased in the hippocampus but were reduced in the cortex of MSC recipients. While there were no transplant-related changes in pE3-A[beta] plaque numbers, a reduction in the size of pE3-A[beta] plaques was observed in the hippocampus of transplant recipients.This is the first study to show reduction in pE3-A[beta] plaque size. pE3-A[beta] plaques have gained attention as potential key participants in AD due to their increased aggregation propensity, the possibility for the initial seeding event, resistance against degradation and neurotoxicity. These findings support the hypothesis that MSC-transplants may affect AD pathology via an immune modulatory function that includes an effect on microglial cells
    • …
    corecore