8 research outputs found

    Neighbourhood of the central fold of the tRNA molecule bound to the E.coli

    No full text

    Cross talk between cytokine and hyperthermia-induced pathways: identification of different subsets of NF-κB-dependent genes regulated by TNFα and heat shock

    Get PDF
    Heat shock inhibits NF-κB signaling, yet the knowledge about its influence on the regulation of NF-κB-dependent genes is limited. Using genomic approaches, i.e., expression microarrays and ChIP-Seq, we aimed to establish a global picture for heat shock-mediated impact on the expression of genes regulated by TNFα cytokine. We found that 193 genes changed expression in human U-2 osteosarcoma cells stimulated with cytokine (including 77 genes with the κB motif in the proximal promoters). A large overlap between sets of genes modulated by cytokine or by heat shock was revealed (86 genes were similarly affected by both stimuli). Binding sites for heat shock-induced HSF1 were detected in regulatory regions of 1/3 of these genes. Furthermore, pre-treatment with heat shock affected the expression of 2/3 of cytokine-modulated genes. In the largest subset of co-affected genes, heat shock suppressed the cytokine-mediated activation (antagonistic effect, 83 genes), which genes were associated with the canonical functions of NF-κB signaling. However, subsets of co-activated and co-repressed genes were also revealed. Importantly, pre-treatment with heat shock resulted in the suppression of NF-κB binding in the promoters of the cytokine-upregulated genes, either antagonized or co-activated by both stimuli. In conclusion, we confirmed that heat shock inhibited activation of genes involved in the classical cytokine-mediated functions of NF-κB. On the other hand, genes involved in transcription regulation were over-represented in the subset of genes upregulated by both stimuli. This suggests the replacement of NF-κB-mediated regulation by heat shock-mediated regulation in the latter subset of genes, which may contribute to the robust response of cells to both stress conditions

    Expression of Cytosolic and Plastid Acetyl-Coenzyme A Carboxylase Genes in Young Wheat Plants

    No full text
    Expression of cytosolic and plastid acetyl-coenzyme A carboxylase (ACCase) gene families at the mRNA level was analyzed in developing wheat (Triticum aestivum) plants. The major plastid ACCase mRNA level is high in the middle part of the plant and low in roots and leaf blades. An alternative plastid ACCase transcript initiated at a different promoter and using an alternative 5′ splice site for the first intron accumulates to its highest level in roots. Cytosolic ACCase mRNA also consists of two species, one of which is present at approximately a constant level, whereas the other accumulates to a high level in the lower sheath section. It is likely that different promoters are also responsible for the two forms of cytosolic ACCase mRNA. The abundances of cytosolic and plastid ACCase mRNAs in the sheath section of the plant are similar. ACCase protein level is significantly lower in the leaf blades, in parallel with changes in the total ACCase mRNA level. Homoeologous ACCase genes show the same expression patterns and similar mRNA levels, suggesting that none of the genes was silenced or acquired new tissue specificity after polyploidization

    Translational and structural analysis of the shortest legume ENOD40 gene in Lupinus luteus

    No full text
    Two early nodulin 40 (enod40) genes, ENOD40-1, the shortest legume ENOD40 gene, and ENOD40-2, were isolated from Lupinus luteus, a legume with indeterminate nodules. Both genes were expressed at similar levels during symbiosis with nitrogen-fixing bacteria. ENOD40 phylogeny clustered the L. luteus genes with legumes forming determinate nodules and revealed peptide similarities. The ENOD40-1 small ORF A fused to a reporter gene was efficiently expressed in plant cells, indicating that the start codon is recognized for translation. The ENOD40-1 RNA structure predicted based on Pb(II)-induced cleavage and modeling revealed four structurally conserved domains, an absence of domain 4 characteristic for legumes of indeterminate nodules, and interactions between the conserved region I and a region located upstream of domain 6. Domain 2 contains Mg(II) ion binding sites essential for organizing RNA secondary structure. The differences between L. luteus and Glycine max ENOD40 RNA models suggest the possibility of a switch between two structural states of ENOD40 transcript

    Crosstalk between HSF1 and HSF2 during the heat shock response in mouse testes

    Get PDF
    Heat Shock Factor 1 (HSF1) is the primary transcription factor responsible for the response to cellularstress, while HSF2 becomes activated during development and differentiation, including spermatogen-esis. Although both factors are indispensable for proper spermatogenesis, activation of HSF1 by heatshock initiates apoptosis of spermatogenic cells leading to infertility of males. To characterize mecha-nisms assisting such heat induced apoptosis we studied how HSF1 and HSF2 cooperate during the heatshock response. For this purpose we used chromatin immunoprecipitation and the proximity ligationapproaches. We looked for co-occupation of binding sites by HSF1 and HSF2 in untreated (32â—¦C) or heatshocked (at 38â—¦C or 43â—¦C) spermatocytes, which are cells the most sensitive to hyperthermia. At thephysiological temperature or after mild hyperthermia at 38â—¦C, the sharing of binding sites for both HSFswas observed mainly in promoters of Hsp genes and other stress-related genes. Strong hyperthermiaat 43â—¦C resulted in an increased binding of HSF1 and releasing of HSF2, hence co-occupation of pro-moter regions was not detected any more. The close proximity of HSF1 and HSF2 (and/or existence ofHSF1/HSF2 complexes) was frequent at the physiological temperature. Temperature elevation resultedin a decreased number of such complexes and they were barely detected after strong hyperthermia at43â—¦C. We have concluded that at the physiological temperature HSF1 and HSF2 cooperate in spermato-genic cells. However, temperature elevation causes remodeling of chromatin binding and interactionsbetween HSFs are disrupted. This potentially affects the regulation of stress response and contributes tothe heat sensitivity of these cells
    corecore