33 research outputs found

    Skin gene therapy for acquired and inherited disorders

    Get PDF
    The rapid advances associated with the Human Genome Project combined with the development of proteomics technology set the bases to face the challenge of human gene therapy. Different strategies must be evaluated based on the genetic defect to be corrected. Therefore, the re-expression of the normal counterpart should be sufficient to reverse phenotype in single-gene inherited disorders. A growing number of candidate diseases are being evaluated since the ADA deficiency was selected for the first approved human gene therapy trial (Blaese et al., 1995). To cite some of them: sickle cell anemia, hemophilia, inherited immune deficiencies, hyper-cholesterolemia and cystic fibrosis. The approach does not seem to be so straightforward when a polygenic disorder is going to be treated. Many human traits like diabetes, hypertension, inflammatory diseases and cancer, appear to be due to the combined action of several genes and environment. For instance, several wizard gene therapy strategies have recently been proposed for cancer treatment, including the stimulation of the immune system of the patient (Xue et al., 2005), the targeting of particular signalling pathways to selectively kill cancer cells (Westphal and Melchner, 2002) and the modulation of the interactions with the stroma and the vasculature (Liotta, 2001; Liotta and Kohn, 2001).Our work is supported by grants SAF-2004-07717 from Ministerio de Ciencia y Tecnología (Spain) and LSHG-512073 from UE to M. Del Rio, LSHG-503447 from UE to J.L. Jorcano and LSHG-512102 from UE to F. Larcher. We express our gratitude to Dr. Y. Gache, Dr. F. Spirito and Dr. G. Meneguzzi for providing EM pictures to illustrate this work

    Contraste ontológico: una herramienta para el análisis de experimentos de proteómica/genómica funcional

    Get PDF
    La identificación de la activación de funciones biológicas u otros fenómenos mediados por genes suele ser una tarea compleja y dificultosa. Los resultados dependen de las referencias de contraste y la manera en que son visualizados o proporcionados al investigador, para su análisis. Presentamos aquí, una herramienta para analizar y comparar, en forma simultánea, múltiples referencias de contraste mediante una interfaz de análisis simple, que identifica automáticamente los términos biológicos de interés; facilitando la exploración y descubrimiento, en experimentos genómicos/proteómicos funcionales. La herramienta fue evaluada en un experimento de expresión diferencial de proteínas en progresión tumoral mediada por SPARC, permitiendo la identificación de vías metabólicas asociadas a ella tales como organización de filamentos intermedios del citoesqueleto y regulación positiva de migración de leucocitos entre otras.Sociedad Argentina de Informática e Investigación Operativ

    SPARC (secreted protein acidic and rich in cysteine) knockdown protects mice from acute liver injury by reducing vascular endothelial cell damage

    Get PDF
    Secreted protein, acidic and rich in cysteine (SPARC) is involved in many biological process including liver fibrogenesis, but its role in acute liver damage is unknown. To examine the role of SPARC in acute liver injury, we used SPARC knock-out (SPARC−/−) mice. Two models of acute liver damage were used: concanavalin A (Con A) and the agonistic anti-CD95 antibody Jo2. SPARC expression levels were analyzed in liver samples from patients with acute-on-chronic alcoholic hepatitis (AH). SPARC expression is increased on acute-on-chronic AH patients. Knockdown of SPARC decreased hepatic damage in the two models of liver injury. SPARC−/− mice showed a marked reduction in Con A-induced necroinflammation. Infiltration by CD4+ T cells, expression of tumor necrosis factor-α and interleukin-6 and apoptosis were attenuated in SPARC−/− mice. Sinusoidal endothelial cell monolayer was preserved and was less activated in Con A-treated SPARC−/− mice. SPARC knockdown reduced Con A-induced autophagy of cultured human microvascular endothelial cells (HMEC-1). Hepatic transcriptome analysis revealed several gene networks that may have a role in the attenuated liver damaged found in Con A-treated SPARC−/− mice. SPARC has a significant role in the development of Con A-induced severe liver injury. These results suggest that SPARC could represent a therapeutic target in acute liver injury

    SPARC: a matricellular regulator of tumorigenesis

    Get PDF
    Although many clinical studies have found a correlation of SPARC expression with malignant progression and patient survival, the mechanisms for SPARC function in tumorigenesis and metastasis remain elusive. The activity of SPARC is context- and cell-type-dependent, which is highlighted by the fact that SPARC has shown seemingly contradictory effects on tumor progression in both clinical correlative studies and in animal models. The capacity of SPARC to dictate tumorigenic phenotype has been attributed to its effects on the bioavailability and signaling of integrins and growth factors/chemokines. These molecular pathways contribute to many physiological events affecting malignant progression, including extracellular matrix remodeling, angiogenesis, immune modulation and metastasis. Given that SPARC is credited with such varied activities, this review presents a comprehensive account of the divergent effects of SPARC in human cancers and mouse models, as well as a description of the potential mechanisms by which SPARC mediates these effects. We aim to provide insight into how a matricellular protein such as SPARC might generate paradoxical, yet relevant, tumor outcomes in order to unify an apparently incongruent collection of scientific literature

    Therapeutic properties of a vector carrying the HSV thymidine kinase and GM-CSF genes and delivered as a complex with a cationic copolymer

    Get PDF
    corecore