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Abstract

Secreted protein, acidic and rich in cysteine (SPARC) is involved in many biological process 

including liver fibrogenesis, but its role in acute liver damage is unknown. To examine the role of 

SPARC in acute liver injury, we used SPARC knock-out (SPARC−/−) mice. Two models of acute 

liver damage were used: concanavalin A (Con A) and the agonistic anti-CD95 antibody Jo2. 

SPARC expression levels were analyzed in liver samples from patients with acute-on-chronic 

alcoholic hepatitis (AH). SPARC expression is increased on acute-on-chronic AH patients. 

Knockdown of SPARC decreased hepatic damage in the two models of liver injury. SPARC−/− 

mice showed a marked reduction in Con A-induced necroinflammation. Infiltration by CD4+ T 

cells, expression of tumor necrosis factor-α and interleukin-6 and apoptosis were attenuated in 

SPARC−/− mice. Sinusoidal endothelial cell monolayer was preserved and was less activated in 
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Con A-treated SPARC−/− mice. SPARC knockdown reduced Con A-induced autophagy of 

cultured human microvascular endothelial cells (HMEC-1). Hepatic transcriptome analysis 

revealed several gene networks that may have a role in the attenuated liver damaged found in Con 

A-treated SPARC−/− mice. SPARC has a significant role in the development of Con A-induced 

severe liver injury. These results suggest that SPARC could represent a therapeutic target in acute 

liver injury.

INTRODUCTION

Acute liver injury might be caused by a number of etiologies including viral, toxic and 

autoimmune, among others.1 Liver damage may progress to acute liver failure when the 

amount of hepatocyte death overwhelmed the liver’s regenerative capability.

Secreted protein, acidic and rich in cysteine (SPARC), also called as osteonectin or BM-40, 

is a secreted extracellular matrix-associated protein involved in a number of biological 

processes.2 Among other functions, SPARC has a major role in wound healing response to 

injury, tissue remodeling3 and fibrosis.4,5 Regarding the role of SPARC in liver fibrosis, we4 

and others6 showed that SPARC is overexpressed in cirrhotic livers form mice and patients. 

Mechanisms behind the inhibition of fibrosis when SPARC is knocked down involved 

reduction of transforming growth factor-β1 (TGF-β1) expression and a decreased number of 

activated hepatic stellate cells. In addition, SPARC has the ability to induce actin 

cytoskeletal rearrangement essential for cell transmigration by binding to vascular cell 

adhesion molecule-1 (VCAM-1)7 and it can also exert counter-adhesive function by 

affecting focal adhesion complexes and reorganization of actin stress fibers.8 We recently 

found that SPARC is involved in hepatic fibrogenesis using a chronic damage model.4 To 

examine the role of SPARC in acute liver injury we used SPARC knockout mice and 

explored two different models of acute liver injury induced by concanavalin A (Con A) and 

the agonistic CD95 antibody Jo2.

Con A is a lectin which is known to activate T-cell populations.9 Con A induces acute 

inflammation of the liver parenchyma by the infiltration of activated lymphocytes, resulting 

in massive hepatocellular necrosis and intra-sinusoidal hemostasis. Con A-induced severe 

liver injury is being extensively used as an acute model for human autoimmune hepatitis as 

it mimics several features of this disease. It has been observed that Con A can induce both 

T-cell-dependent and -independent hepatitis in mice.10,11 Mechanisms of T-cell-independent 

liver damage likely involve autophagy of hepatic endothelial cells and hepatocytes, although 

underlying events explaining such organ/cellular specificity is still unclear.11 Acute liver 

damage can also be induced by the agonistic anti-CD95 antibody Jo2 that generates 

apoptosis on hepatocytes and liver endothelial cells.12,13

Mice with a knockout of SPARC exhibited significantly decreased sensitivity toward acute 

liver damage induced by the agonistic CD95 antibody Jo2 and Con A. In this work, we 

provide for the first time strong evidences that SPARC deficiency has a protective role in 

Con A-induced hepatitis model likely through reducing vascular endothelial cell 

susceptibility to apoptosis/autophagy and subsequent hepatic necro-inflammation. This 
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report further supports the design of new therapeutic approaches based on SPARC 

expression inhibition for the treatment of acute liver injury.

RESULTS

Expression of SPARC during severe liver injury and decreased liver damage in SPARC-
deficient mice

A significant upregulation in SPARC expression levels was observed in samples from 

patients with alcoholic hepatitis (AH) when compared with patients with chronic hepatitis C 

virus infection or nonalcoholic steatohepatitis by quantitative PCR (qPCR) (Figure 1a). We 

next asked whether SPARC expression could be similarly induced in in vivo models 

developed in SPARC+/+ mice based on single Con A, anti-CD95 or galactosamine/

lipopolysaccharide treatment. Although in non-treated animals SPARC expression was 

almost negligible, after 24 h of Con A, anti-CD95 or galactosamine/lipopolysaccharide 

treatment, SPARC was upregulated as measured by qPCR. Immunohistochemistry analysis 

of Con A-treated mice revealed that SPARC was mainly expressed in sinusoid areas (Figure 

1b). We then asked whether SPARC deficiency may affect hepatocyte death and 

inflammation during acute liver injury. At 24 h after Con A (Figure 1c) or anti-CD95 

(Figure 1d) administration, SPARC+/+ livers showed extensive areas of necrosis, 

inflammation and distortion of liver architecture. These features were markedly reduced in 

livers from Con A or anti-CD95-treated SPARC−/− animals. Then, serum transaminases 

levels were measured at 24 h after Con A or anti-CD95 treatment. A significant increase in 

aspartate transaminase and alanine transaminase serum levels were found in SPARC+/+ mice 

in comparison with SPARC−/− mice on both models (Figures 1c and d). Similar results were 

observed in Galactosamin/lipopolysaccharide animal model (not shown).

To assess whether hepatic SPARC-induced in vivo inhibition could protect against Con A-

induced liver damage, AdasSPARC or Adβgal (control adenovirus) were infused via the tail 

vein 48 h prior to Con A application in wild-type (wt) mice. AdasSPARC was able to 

attenuate hepatic SPARC expression as shown by qPCR (Figure 2a) and markedly decreased 

liver injury.

To further evaluate the therapeutic effect of SPARC inhibition once liver injury was 

induced, small interference RNA anti-SPARC (siSPARC) was administered via portal vein 

2 h after Con A injection. Forty-eight hours after siSPARC injection a significant decrease 

in liver damage was observed in comparison with siControl (Figure 2c). In addition, 

siSPARC was able to attenuate hepatic SPARC expression as shown by qPCR (Figure 2b) 

and, most important, therapeutic inhibition of SPARC resulted in prolonged animal survival 

(Figure 2d). When heterocygotic SPARC animals (SPARC+/−) were treated with Con A 

decreased amount of liver damage was observed in comparison with Con A-treated 

SPARC+/+ mice (Figure 2e). In addition, when SPARC expression was reconstituted with an 

adenovirus encoding SPARC (AdsSPARC) sensitivity to Con A was partially restored 

(Figure 2f).

Consistent with results shown in Figures 1 and 2, a significant reduction in the hepatic 

inflammation was found after Con A application in SPARC−/− when compared with wt mice 
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(Figures 3a and b). A significant reduction in the amount of CD4+ T lymphocytes was 

observed in SPARC−/− mice when compared with control (Figures 3c and d).

We then analyzed the effect of SPARC inhibition on serum concentration of pro-

inflammatory cytokines after Con A injection. As shown in Figure 3e, serum levels of 

interleukin-6 and TNF-α were significantly reduced in SPARC−/− mice at 3 and 9 h after 

Con A application, respectively. In addition, a lack of TGF-β1 peak was found in SPARC-

deficient mice when compared with SPARC+/+ at 9 and 24 h (Figure 3e). Furthermore, a 

reduction in the extent of liver parenchymal cell apoptosis was found in SPARC−/− when 

compared with wt mice by TUNEL (Figure 3f).

Reduced endothelial cell damage after SPARC knockdown

Alterations in liver sinusoidal endothelial cells (LSECs) are likely among the earliest events 

of severe liver injury facilitating infiltration of activated T cells into liver parenchyma. By 

electron microscopy, LSEC layer was observed to be disrupted in SPARC+/+ mice, but it 

remained preserved in SPARC−/− mice (Figure 4a). To uncover the mechanisms by which 

Con A alters endothelial cell barrier, we performed culture experiments with human 

microvascular endothelial cell (HMEC-1) cells. SPARC mRNA expression was induced 

after 1 h of Con A incubation (Figure 4b). To assess the role of SPARC deficiency in 

endothelial cells, SPARC was knocked down by using a lentivirus encoding a siRNA 

specific for SPARC (Figure 4c). A significant reduction in both the proportion of adhered 

cells with a thick fibrillar pattern, known as stress fibers and in the phalloidin staining 

distribution, as well as an increased in gaps separating cells were found in cultures of naive 

and siSCR-treated cells when compared with SPARC siRNA-treated cells (Figure 4d). 

Interestingly, SPARC knockdown resulted in a significant reduction in the percentage of 

apoptotic cells after 3 h of Con A incubation (Figure 4e). SPARC knockdown also showed 

an increased HMEC-1 adhesive capacity to fibronectin (not shown).

Next, we assessed if SPARC knockdown decreases the amount of transmigrated 

lymphocytes through Con A-treated HMEC-1 cell layer toward CCL19 and CCL21 as 

chemoattractants. SPARC inhibition resulted in a reduction in the number of lymphocytes 

that migrated across the endothelial cell monolayer (Figure 4f). These data suggest that 

SPARC inhibition might protect endothelial cell layer from apoptosis induction caused by 

Con A and preserve endothelial cell monolayer.

Because expression of VCAM-1 in endothelial cells is induced by inflammation,14 we next 

analyzed its expression pattern after Con A application. As expected, a marked upregulation 

of VCAM-1 was found in the liver of wt mice at 7 h after Con A application that was 

marked blunted in SPARC−/− mice (Figure 4g). These results further suggest the 

involvement of SPARC in sinusoidal cells inflammation in early development of severe 

liver injury.

To further understand how the endothelial layer could be affected by Con A resulting in 

subsequent hemorrhage and massive cellular infiltration, HMEC-1 cells were stained with 

the autophagic marker LC3. As shown in Figure 4h, the LC3 punctate pattern was increased 

in HMEC-1 cells after 3 h of Con A incubation. Interestingly, SPARC knockdown prevented 
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LC3 staining. Blocking autophagy using chloroquine confirmed that LC3 decrease with 

SPARC knockdown resulted from autophagy inhibition as LC3 dots remained stable and not 

accumulated when SPARC was attenuated and the LC3 flux interrupted. These results 

indicate that Con A induces autophagy in endothelial cells, which is partially mediated by 

SPARC.

Transcriptome analysis reveals molecular mechanisms potentially involved in the role of 
SPARC in Con A-induced severe liver damage

Microarray analysis was performed in liver tissue from SPARC−/− and SPARC+/+ mice at 9 

h after Con A administration. A total of 169 genes showed changes (P < 0.01; 94 

upregulated and 75 down-regulated genes) in SPARC−/− mice when compared with wt 

(Table 1). A list of the significantly modified genes as classified by ontological biological 

process categories is shown in supplementary table. Interestingly, canonical pathways and 

biological functions identified by Ingenuity Pathway Analysis showed key groups of genes 

associated with cell adhesion, cytoskeletal organization and apoptosis (Figure 5). They 

include upregulation of actin capping protein β2 (CAPZB, NM_009798) gene, tubulin β 

Class IIb (TUBB2B, NM_023716) and downregulation of thymosin β (TMSB10, 

NM_001190327), slingshot homolog 1 (SSH1, NM_198109), thioesterase superfamily 

member 4 (THEM4, NM_029431), tumor necrosis factor receptor superfamily member 14 

(TNFRSF14, NM_178931) and potassium voltage-gated channel, KQT-Like subfamily 

member 1 (KCNQ1, NM_008434).

DISCUSSION

In this work, we demonstrated that SPARC expression were strongly upregulated in the liver 

of patients with AH, but not in non-cirrhotic patients with chronic hepatitis C virus infection 

or nonalcoholic steatohepatitis, indicating that SPARC might be involved in the 

physiopathology of acute-induced liver damage. In agreement with this, Bykov et al.15 

observed that SPARC is induced in mice with AH using microarray analysis. Our results 

showed that SPARC expression was also induced in two additional models of acute liver 

damage induced by the agonistic CD95 antibody Jo2 and Con A in vivo.

We herein showed that acute liver damage was dramatically reduced in livers from Con A-

treated SPARC−/− animals. Consistent with this result, in vivo attenuation of SPARC 

expression AdasSPARC was efficient to prevent Con A-induced acute hepatitis, underlying 

a key contribution of SPARC in this model. In addition and more importantly, in vivo 

SPARC inhibition using siSPARC administered after the initiation of Con A-induced liver 

damage resulted therapeutic, decreased liver injury and prolonged animal survival. This 

model is characterized by an excessive production of pro-inflammatory cytokines that is 

followed by a massive inflammatory infiltration and hepatic necrosis. When we analyzed the 

effect of SPARC knockdown on serum concentration of interleukin-6 and tumor necrosis 

factor-α (TNF-α) after Con A injection significantly reduced levels were observed 

compared with SPARC+/+ mice. This observation reveals that the protective effect of 

SPARC knockdown is related, at least in part, to a less inflamed microenvironment.
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TGF-β is a pleiotropic cytokine with a crucial role in acute liver injury and in the induction 

of apoptotic cell death in hepatocytes, although the mechanisms of apoptosis triggered by 

TGF-β are diverse,16 cooperation with FasL or TNF-α at inducing hepatocyte apoptosis was 

reported. Interestingly, SPARC−/− mice treated with Con A showed a significant decrease in 

the expression of TGF-β1 when compared with SPARC+/+ mice. Thus, a protective effect of 

SPARC deficiency would likely be related to a modulation in the TGF-β1 upregulation 

induced by Con A.

Lymphocyte migration to the subendothelial layer is a common feature of inflammatory 

human liver diseases such as immune-mediated hepatitis. A critical reduction in the hepatic 

inflammation composed by CD8+ (not shown) and CD4+ T lymphocytes was seen after Con 

A injection in SPARC−/− mice. This result is in line with our previous report showing that 

CD4+ T cells from SPARC−/− mice showed a decreased migratory ability toward inflamed 

livers.4 This effect might contribute to decrease the degree of activated lymphocytes 

infiltrating the liver.

The inflammation and damage of hepatic vascular endothelial cells will precede the 

subsequent lymphocyte infiltration and cytokine-mediated hepatocyte injury. It was 

observed that Con A injection induced expression of a wide variety of chemokines and 

adhesion molecules in the liver including VCAM-1. A potent upregulation of VCAM-1 was 

seen in the liver of wt mice after Con A injection, whereas in SPARC−/− mice sinusoidal 

inflammation is markedly diminished providing evidence that the absence of SPARC might 

be involved in preservation of sinusoidal barrier. Con A was shown to bind to LSECs early 

after its application in vivo17 and activated T cells in presence of Con A was found to result 

in LSEC cytotoxicity. Because the damage of hepatic vascular endothelial cells precedes the 

subsequent lymphocyte infiltration and cytokine-mediated hepatocyte injury we analyzed 

the LSEC layer by electron microscopy and observed that it was disrupted in SPARC+/+ 

mice, but remained well preserved in SPARC−/− mice. Cell adhesive properties require 

secreted extracellular matrix-dependent intracellular signaling pathways and they are usually 

accompanied by dynamic changes in actin filament cytoskeleton. Considering that SPARC 

expression is known to influence cell adhesiveness and that SPARC mediates focal adhesion 

disassembly in bovine aortic endothelial cells,8 we analyzed the effects of Con A on 

HMEC-1 cells. In agreement with other reports, SPARC inhibition resulted in an increased 

HMEC-1 adhesion, well cytoskeleton organization and reduced transmigration of activated 

lymphocytes after Con A treatment. These results suggest that SPARC absence may be 

beneficial to keep the endothelial barrier preserved to ameliorate the hepatic injury.

It has previously shown that Con A might induce autophagy of LSEC.11 Consistent with our 

results, the disruption of endothelial cells may be mechanistically explained in part by the 

fact that Con A can induce endothelial damage independent of T cells through autophagy 

mediated apoptosis as previously evaluated in severe combined immunodeficiency/non-

obese diabetic mice and HMEC-1 cell culture.10,11 In addition, it has been reported that 

SPARC potentiates apoptosis through caspase 8 in colorectal cancer cells18 and induces 

apoptosis in ovarian cancer cells.19 The inhibition of SPARC reported on this work was 

successful to decrease autophagic and apoptotic rates induced by Con A.
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Microarray analyses showed a number of genes that were narrowed down. Our overall 

results suggest that the reduction in liver damage observed in SPARC-deficient mice seems 

to be the result of a sum of several mechanisms rather than the effect of changes in a small 

group of specific genes. In accordance with phalloidin results, we observed the increased 

expression of CAPZB and tropomyosin 4 (TPM4, NM_001001491) that stabilizes actin 

filaments and has a role in the regulation of cell morphology and cytoskeletal organization. 

This result agrees with Bhoopathi et al.20 that reports SPARC as an effector of Scr-induced 

cytoskeleton disruption in meduloblastoma cells. Our best Ingenuity Pathway Analysis gene 

network model showed that SPARC depletion was associated with an upregulation of 

CAPZB gene, involved in the regulation of cell morphology and cytoskeletal organization,21 

and TUBB2B, a major component of microtubules. In contrast, results showed 

downregulation of TMSB10 that regulates actin dynamics as a cytoplasm G-actin-

sequestering protein leading to actin disruption and apoptosis in cancer cells.22 In addition, 

the protein encoded by SSH1 gene dephosphorylates and activates the actin binding/

depolymerizing factor cofilin, which subsequently binds to actin filaments and stimulates 

their disassembly;23 this gene is down-regulated in SPARC−/− mice. Another important gene 

found downregulated is TNFRSF14, a member of the TNF-receptor super-family, which 

may mediate the signal transduction pathways that activate the immune response triggered 

by Con A administration.24

In summary, we herein demonstrate that SPARC deficiency protects the liver from Con A 

and the agonistic anti-CD95 receptor antibody Jo2-induced liver injury. Importantly, 

therapeutic inhibition of SPARC resulted in a reduced liver damage and prolonged animal 

survival. Mechanisms involved in Con A model are complex and likely act at different 

levels and through diverse processes implicated in hepatic damage.

Our new evidences implicate reduction in the extent of liver necro-inflammation, reduction 

in endothelial cell apoptosis and restoration of their adhesive properties with the result of an 

intact endothelial cell layer that prevents CD4 T-cell transmigration through the endothelial 

layer. The differential gene expression pattern suggests protection against cytoskeletal 

disruption making endothelial cells less susceptible to Con A-induced damage. In 

conclusion, the design of interventions to inhibit hepatic SPARC would likely help 

protecting the liver against acute liver injury.

MATERIALS AND METHODS

Animals and experimental design

Male C57BL/6x129SvJ SPARC−/−, SPARC+/+ or SPARC+/− littermate mice (6–8 weeks 

old) were used (the Jackson Laboratory, Bar Harbor, ME, USA). Mice were given a single 

i.v. injection of Con A (Sigma, St Louis, MO, USA) at 15 μg g−1 bodyweight. Animals were 

killed at 3, 9 and 24 h after Con A application and samples were obtained. Some groups of 

animals received i.v. administration of 1.3 × 109 median tissue culture infective dose 

(TCID50) of AdasSPARC or Adβgal adenoviruses. Other groups received intrahepatic 

administration of AdsSPARC or Adβgal (TCID50: 5×109).
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For a therapeutic use of siRNA, rat SPARC siRNAs (siSPARC; four constructs used in 

combination: 5′-GAGAAGAACUACAACAUGUUU-3′, 5′-

CCAGAACCAUCAUUGCAAAUU-3′, 5′-GAACAUUGCACCACUCGCUUU-3′, 5′-

CUACAUCGGACCAUGCAAAUU-3′) and a control siRNA (siControl; D-001210-05-05) 

were purchased from Dharmacon (Chicago, IL, USA). Mice were given a single i.v. 

injection of Con A (Sigma) at 10 μg g−1 body weight. Some groups of animals received via 

portal vein 1 ml of saline, siControl or siSPARC. Sham-operated animals did not receive 

Con A. Animals were killed at 48 h after Con A application and samples were obtained. 

Some animals were used for survival analysis. Other group of animals received a sub-lethal 

dose (0,25 μg g−1) of the agonistic CD95 antibody Jo2 or D-Galactosamin/

lipopolysaccharide (galactosamin; 0,125 mg g−1 per lipopolysaccharide; 12.5 μg kg−1) and 

killed at 24 h. All experiments were performed according to the ‘Guide for the Care and Use 

of Laboratory Animals’ and approved by the School of Biomedical Sciences of Austral 

University. Patients admitted to the Liver Unit, Hospital Clínic of Barcelona with clinical, 

analytical and histological features of AH from 2007 to 2010 were included in the study. All 

patients had histological diagnosis of AH (n = 34). Liver biopsy was obtained using a 

transjugular approach. We included a cohort of patients with morbid obesity and associated 

nonalcoholic steatohepatitis (n = 10). A laparoscopic liver biopsy was obtained in these 

patients during bariatric surgery. We also included patients with chronic hepatitis C-induced 

liver disease who did not receive previous antiviral treatment (n = 5). As controls, fragments 

of normal liver tissue were obtained from optimal cadaveric liver donors (n = 3) or resection 

of liver metastases (n = 3). The study protocol conformed to the ethical guidelines of the 

1975 Declaration of Helsinki and was approved by the Ethics Committee of the Hospital 

Clinic of Barcelona. All patients gave informed consent. For in vitro studies Con A and 

chloroquine was administered on media at a concentration of 15 μg ml−1 and 20 μM 

respectively.

Generation of recombinant vectors

AdasSPARC, an adenovirus encoding for SPARC antisense full-length sequence, 

AdsSPARC, an adenovirus encoding for the sense full-length sequence25 and Adβgal were 

constructed and produced as described elsewhere.26 Lentivirus vectors were produced as 

follows. pRNATin.H1.4-L.51 vector containing siSPARC sequence 

(tggatcccgcggcaggcagagcgcgct ctcttgatatccggagagcgcgctctgcctgccgttttttccaactcgagg) was 

produced following the Genscript cloning protocol. Scramble control vector was ordered 

from Genscript. Lentiviral vectors were produced using The ViraPower Lentiviral 

Technology (Invitrogen, Carlsbad, CA, USA). Briefly, 293 FT cells were transfected with a 

mixture of 36 μl Lipofectamine 2000 (Invitrogen), 9 μg (9 μl) of ViraPower Packaging Mix 

and 3 μg of the pRNATin.H1.4-L.51 (siSPARC) or scramble (siSCR) expression plasmid 

DNA in 1 ml of Opti-MEM I Medium (Invitrogen) without serum. Lentivirus-containing 

supernantants were collected after 48–72 h post transfection. Supernantant was used for 48 h 

to transduce HMEC-1 cells.

Serological analysis

Serum was obtained by retro-orbital bleeding from anesthetized mice and analyzed using a 

standard clinical analyzer (ARCHITECT, Abbott, Abbott Park, IL, USA). Serum levels of 
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TNF, and interleukin-6 were measured by enzyme-linked immunosorbent assay using 

ELISA kits (R&D Systems, Minneapolis, MN, USA) according to manufacturer’s 

instructions.

qPCR

Liver tissue was homogenized and total RNA was extracted by trizol reagent (Sigma). RNA 

(1 μg) was reverse transcribed with 200 U of superscript ii reverse transcriptase (Invitrogen) 

using 500 ng of oligo (dT) primers. cDNAs were subjected to qPCR (Table 2). SPARC and 

TGF-β1 mRNA levels were quantified by SYBR Green (Invitrogen) qPCR (Stratagene 

Mx3005p, Stratagene, USA). All PCR amplifications were carried out using 40 cycles of 95 

°C for 30 s, 55 °C for 30 s and 72 °C for 30 s. For liver human biopsies, qPCR reactions 

were carried out in a StepOnePlusTM Real-Time PCR System using commercial primer-

probe pairs (Applied Biosystems, Foster City, CA, USA). mRNA levels for human SPARC 

were measured. 18S RNA was used as the endogenous control. Gene expression values were 

calculated based on the ΔΔCt method. The results were expressed as 2−ΔΔCt referred as fold 

increase compared with the mean expression quantified on normal livers.

Histological analysis and immunostaining

Liver samples were fixed in 10% formalin and then paraffin-embedded. Tissue was 

dehydrated, embedded in paraffin and stained by hematoxylin and eosin. Chromogenic 

immunohistochemistry for SPARC and CD4 was performed as described elsewhere.4 In 

fluorescent immunocytochemistry, cultured HMEC-1 cells, siSPARC lentivirus transfected 

or siSCR (scrambled siRNA lentivirus-infected cells) were stained with anti-LC3 antibody 

(1:50, Abgent, San Diego, CA, USA), using an anti-rabbit Alexa 488–conjugated IgG 

secondary antibody (1:200, Promega, Madison, WI, USA). For in situ detection of apoptotic 

cells, terminal deoxynucleotidyl transferase-mediated labeling of nick-end DNA (TUNEL) 

staining was performed on cryosections, according to manufacturer’s instructions 

(Calbiochem, Darmstadt, Germany). In fluorescent immunohistochemistry, frozen liver 

sections were stained using an anti-VCAM (1:25, BD, Franklin Lakes, NJ, USA) primary 

antibody and an anti-rat Cy3-conjugated IgG secondary antibody (1:400, Jackson 

Immunoresearch, West Grove, PA, USA).

For in vitro studies on HMEC-1 (Centers for Disease Control, Atlanta, GA, USA) Con A 

and chloroquine were incubated at a concentration of 15 μg ml−1 and 20 μM, respectively. 

Apoptotic cells were quantified by acridine orange and ethidium bromide staining as 

described elsewhere.27 Phalloidin staining was performed as previously described.28 

Pictures were taken using a Nikon DN100 CCD camera mounted onto a Nikon Eclise E800 

microscope (Nikon, Tokyo, Japan).

Flow cytometric analyses

CD4+ cells were quantified by flow cytometry from fresh liver samples. Briefly, mice were 

killed 24h after Con A administration and liver lobes were dissected out, enzymatically and 

mechanically digested with collagenase (Sigma) into single cell suspensions. Additionally, 

cells were treated with red blood cell lysis buffer (0.15 M NH4Cl, 1 mM KHCO3, 0.1 mM 
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Na2–EDTA) and, after hepatocyte sedimentation, supernatant was analyzed as described 

elsewhere.29

Transmigration and cell-adhesion assay

Cell adhesion was performed as previously described.28 To analyze splenocytes 

transmigration through non-transfected, siSPARC or siSCR-lentivirus transfected HMEC-1 

cell monolayers, pretreated for 3 h with Con A, a total number of 1 × 105 HMEC-1 cells 

were seeded on the top of 8 μm pore polycarbonate filters of 24-transwell units (Falcon, BD 

Labware) coated with 10 μg ml−1 fibronectin. HMEC-1 cells were allowed to attach 

overnight at 37 °C. CCL19 and CCL21 (10 ng μl−1) were then placed in the lower chamber 

as splenocyte chemoattractants. 4,6-diamidino-2-phenylindole pre-stained splenocytes 

(5×105) were placed on the top of confluent HMEC-1 cells and were allowed to transmigrate 

for 4 h at 37 °C. After that, the membrane was carefully removed and cells on the upper side 

of the membrane were scraped off. Cells attached to the lower side of the membrane were 

fixed in 2% formaldehyde. Cells were counted using fluorescent-field microscopy and 

images captured in three representative visual fields (10x) were analyzed using CellProfiler 

software (www.cellprofiler.com), and the mean number of cells/field was obtained.

Electron microscopy

After 6 h, Con A-treated animals were killed and hepatic tissue dissected out and processed 

as described elsewhere.30 Ultrathin sections (50 nm) were made and observed under a 

Hitachi H-7000 electron microscope (Hitachi, Tokyo, Japan).

Microarray analysis

Samples were processed following Microarrays Inc. (Nashville, USA) recommendations and 

aRNA was hybridized to 48.5 K exonic evidence-based oligonucleotide (HEEBO) arrays. 

The microarray signal intensity was evaluated using SpotReader software (Niles Scientific, 

Portola Valley, CA, USA). Normalization was performed in an R statistical environment 

using the Limma package (http://www.r-proyect.org). Raw data from the individual arrays 

were processed using standard and normexp background correction31 and print-tip loess 

normalization.32 For normalization in between arrays, the global scale normalization 

function with median absolute deviation was used.33 Heatmaps were constructed using MeV 

software (TM4, Boston, MA, USA).34 The gene ontology analysis was performed using 

DAVID Bioinformatics Resources 6.7 (http://david.abcc.ncifcrf.gov/),35 and a pathway 

analysis was performed with the use of Ingenuity Pathway Analysis (Ingenuity Systems, 

www.ingenuity.com).

Statistical analysis

Data are expressed as mean ± s.e.m. Statistical analysis was performed using Fisher’s least 

sgnificant difference test or Mann–Whitney or Dunn’s multiple test when distribution was 

not normal. Differences were considered to be significant when P < 0.05. The results shown 

are mean values of three independent experiments.
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Figure 1. 
Induction of SPARC expression during acute liver injury and SPARC-deficient mice 

protection from severe liver injury. (a) SPARC mRNA expression levels in human and mice 

liver samples as measured by qPCR. **P < 0.01 versus control, Fisher’s Data are expressed 

as mean ± s.e.m. Statistical analysis was performed using Fisher’s least sgnificant difference 

test. *P < 0.05, **P < 0.01 versus SPARC+/+, for Con A, Galactosamin/lipopolysaccharide 

or anti-CD95 treated mice, Dunn’s multiple test. (b) Immunohistochemistry for SPARC. 

Arrows: endothelial location of SPARC expression (×200). (c) Hematoxylin and eosin 

(H&E) representative microphotographs (x400). Serum aspartate transaminase (AST) and 

alanine transaminase (ALT) levels; P < 0.05 SPARC−/− 24 h Con A versus SPARC+/+ 24 h 
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Con A, Dunn’s multiple test. (d) H&E representative microphotographs (×200). Serum AST 

and ALT after anti-CD95 application. *P < 0.05, **P < 0.001 SPARC−/− 24 h anti-CD95 

versus SPARC+/+ 24 h anti-CD95, Mann–Whitney test.
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Figure 2. 
Preventive and therapeutic effect of the attenuation of SPARC on Con A-induced severe 

liver injury. (a) quantitative PCR (qPCR) analyses of liver samples from untreated wild-type 

(wt), Con A-treated SPARC+/+, Adβgal Con A-treated SPARC+/+ or AdasSPARC 

SPARC+/+ mice. *P < 0.05 versus Adβgal SPARC+/+ 24 h Con A, Dunn’s multiple test. 

Serum aspartate transaminase (AST) and alanine transaminase levels were measured after 24 

h between Con A-treated SPARC+/+, AdasSPARC SPARC+/+ and Adβgal SPARC+/+ 

groups. P < 0.05 versus SPARC+/+ 24 h Con A, Dunn’s multiple test. Hematoxylin and 

Peixoto et al. Page 16

Gene Ther. Author manuscript; available in PMC 2015 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



eosin (H&E) microphotographs of liver sections from Con A-treated SPARC+/+, 

AdasSPARC SPARC+/+ and Adβgal SPARC+/+ mice stained with H&E are also showed 

(x200). Therapeutic effect of siSPARC. (b) qPCR analyses of liver samples from untreated 

wt, siControl Con A-treated SPARC+/+, or siSPARC SPARC+/+ mice. *P < 0.01 versus 

siControl Con A, Dunn’s multiple test. (c) Serum AST levels were measured after 48 h on 

siControl SPARC+/+ and siSPARC SPARC+/+ mice. P < 0.05 versus SPARC+/+ 24 h Con A, 

Dunn’s multiple test. (d) Survival curves of sham, siControl Con A-treated SPARC+/+ or 

siSPARC SPARC+/+ mice. P < 0.05, log-rank test. (e) H&E representative micrograph of 

liver sections from 24 h Con A-treated SPARC+/− mice (x100). qPCR analyses of liver 

samples from untreated, Con A-treated SPARC+/+, untreated SPARC+/− and Con A-treated 

SPARC+/− mice. *P < 0.05, **P < 0.01 versus SPARC+/+, σ < 0.05, σσσ < 0.001 versus 

SPARC+/−, Dunn’s multiple test. (f) H&E representative micrographs from 24 h Con A 

Adβgal SPARC+/+, 24 h Con A Adβgal SPARC−/− and 24 h Con A AdsSPARC SPARC−/− 

mice (x200). SPARC expression RT-PCR of liver samples from 24 h Con A AdsSPARC 

SPARC−/−, 24 h Con A Adβgal SPARC−/− mice.
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Figure 3. 
Reduced parenchymal inflammatory infiltration and apoptosis in SPARC-deficient mice. (a, 
b) Immunohistochemistry for CD4+ (x100). (c) Quantification of CD4+ stained area. *P < 

0.05 SPARC−/− 24 h Con A versus SPARC+/+ 24 h Con A, Dunn’s multiple test. (d) Flow 

cytometry analysis of CD4+ cells in the liver. *P < 0.05, Mann–Whitney test. (e) Serum 

levels of TNFα and interleukin-6 (IL-6). *P < 0.05 SPARC−/− 3 h Con A versus SPARC+/+ 

3 h Con A for TNFα and SPARC−/− 9 h Con A versus SPARC+/+ 9 h Con A for IL-6, 

Mann–Whitney test. qPCR for TGF-β mRNA; ****P < 0.0001 SPARC−/− 9 h Con A versus 
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SPARC+/+ 9 h Con A and *P < 0.05 SPARC−/− 24 h Con A versus SPARC+/+ 24 h Con A, 

Dunn’s multiple test. (f) Representative microphotographs of liver sections from 9 h Con A-

treated SPARC+/+ or SPARC−/− mice stained using TUNEL assay (x40).
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Figure 4. 
Reduced alterations in endothelial cells after SPARC knockdown. (a) Representative 

electron micrographs of liver tissue sections of untreated SPARC+/+, SPARC−/− and 6 h Con 

A-treated SPARC+/+ and SPARC−/− mice. Arrows: damaged LSEC (x15000). (b, c) qPCR 

for SPARC expression on HMEC-1 cells. *P < 0.05, HMEC-1 1 and 3 h Con A versus 

untreated cells, Dunn’s multiple test test. **P < 0.01, siSPARC versus siSCR, Mann–

Whitney test. (d) Phalloidin staining of HMEC cells. (e) Apoptosis quantification of 

HMEC-1 cells by Con A incubation, using the AO/EB assay. **P < 0.01 HMEC-1 versuss 
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HMEC-1 1h Con A; ****P < 0.0001 HMEC-1 versus HMEC-1 3 h Con A; σP < 0.05, 

siSCR 3 h Con A versus siSPARC 3 h Con A, Mann–Whitney test. (f) Splenocytes-

HMEC-1 layer transmigration assay. Mean values ± s.e.m. for individual groups are shown. 

*P < 0.05 HMEC-1 versus HMEC-1 3 h Con A, σσσP < 0.01 siSCR 3 h Con A versus 

siSPARC 3 h Con A, Dunn’s multiple test. (g) Immunofluorescence for VCAM-1 (x200) pv, 

portal vein; cv, central vein. *P < 0.05 SPARC+/+ 7 h Con A versus SPARC−/− 7 h Con A, 

Dunn’s multiple test. (h) LC3 dots per HMEC-1 cell (x600); **P < 0.01, HMEC-1 versus 3 

h Con A, siSCR 3 h Con A versus siSPARC 3 h Con A; *P < 0.05, HMEC-1 chloroquine 

versus 3 h Con A chloroquine, siSCR 3 h Con A chloroquine versus siSPARC 3 h Con A 

chloroquine, Dunn’s multiple comparisons test.
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Figure 5. 
Heatmap and top network of differentially expressed genes. (a) Heatmap of differential gene 

expression among experimental groups at 9 h after Con A application. (b) Top network of 

differentially expressed genes in between SPARC−/− and SPARC+/+ after 9 h of Con A 

treatment, as identified by Ingenuity Pathway Analysis (IPA) analysis. Upregulated and 

downregulated genes in SPARC−/− mice are shown as red spot or green spot, respectively. 

Intensity of the red or green color shows the level of gene expression. Gray represents a 

gene found which is related to the others, but did not meet the cut off criteria. (c) CAPZB 
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and TNFRSF14 mRNA expression levels on mice liver samples after 9 h Con A injection. 

*P < 0.05. Mann–Whitney test.
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Table 1

Ingenuity Pathway Analysis (IPA) top molecules that were differentially expressed in SPARC−/− versus 

SPARC+/+ 9 h Con A-treated mice

Gene ID Exponential value

Fold change upregulated

 CLPX NM_011802 2.519

 PF4 NM_019932 2.455

 RNH1 NM_145135 2.411

 FAM151A NM_146149 2.337

 OLAH NM_145921 2.310

 GIMAP1-GIMAP5 NM_175035 2.224

 CAPZB NM_009798 2.153

 Tpm4 NM_001001491 2.059

 C8G XM_130127 2.057

 GYS1 NM_008195 2.055

Fold change downregulated

 STK32C NM_021302 − 3.318

 CCRN4L NM_009834 − 2.747

 PIRT NM_178656 − 2.485

 C11orf70 NM_199017 − 2.399

 HIC2 NM_178922 − 2.356

 Scgb2b26/Scgb2b27 NM_194338 − 2.338

 RNF182 NM_183204 − 2.309

 GJC3 NM_080450 − 2.281

 BRD8 NM_144864 − 2.222

 9830107B12Rik (includes others) NM_177083 −2.068

IPA top molecules. 9 h of Con A treatment.
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Table 2

qPCR Primers

Target gene Sense primer Antisense primer

SPARC mouse 5′-CCACACGTTTCTTTGAGACC-3′ 5′-AAACCGAAGAGGAGGTGGTG-3′

SPARC human 5′-GGGGCTGCCCAGAACATCAT-3′ 5′-ACCAACTATTGCTTCAGCTC-3′

GAPDH 5′-GATGTCCTGCTCCTTGATGC-3′ 5′-GCAAAGAAGTGGCAGGAAGA-3′

TGF-β1 5′-GCCTGCTTCACCACCTTCTTG-3′ 5′-TGTTGGTTGTAGAGGGCAAG-3′

Abbreviations: GADPH, glyceraldehyde 3-phosphate dehydrogenase; SPARC, secreted protein, acidic and rich in cysteine; TGF-β1, transforming 
growth factor-β1.
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