91 research outputs found

    Structural disorder in high-spin {CoII9WV6}\{{Co^{II}}_{9}{W^{V}}_{6}\} (core)-[pyridine N-oxides] (shell) architectures

    Get PDF
    The combinations of Co(II), octacyanidotungstate(V), and monodentate pyridine N-oxide (pyNO) or 4-phenylpyridine N-oxide (4-phpyNO) led to crystallization of novel crystalline phases {CoII[CoII8(pyNO)12(MeOH)12][WV(CN)8]6} (1) and {CoII[CoII8(4-phpyNO)7(MeOH)17][WV(CN)8]6}·7MeOH·(4-phpyNO)3 (2). In both architectures, metal–cyanide clusters are coordinated by N-oxide ligands in a simple monodentate manner to give the spherical objects of over 1 nm core diameter and about 2.2 nm (1) and 3 nm (2) of the total diameter, terminated with the aromatic rings. The supramolecular architecture is dominated by dense and rich π–π interaction systems. Both structures are characterized by a significant structural disorder in ligand shell, described with the suitable probability models. For 1, the π–π interactions between the pyNO ligands attached to the same metal centers are suggested for the first time. In 2, 4-phpyNO acts as monodentate ligand and as the crystallization molecule. Magnetic studies indicate the high-spin ground state due to the ferromagnetic interactions Co(II)–W(V) through the cyanido bridges. Due to the high symmetry of the clusters, no signature of slow magnetic relaxation was observed. The characterization is completed by solid-state IR and UV–Vis–NIR spectroscopy. The conditions for the stable M9M’6-based crystals formation are synthetically discussed in terms of the type of capping ligands: monodentate, bridging, and chelating. The potential of the related polynuclear forms toward the magnetism-based functional properties is critically indicated

    Field-induced slow magnetic relaxation in Mn9W6Mn_9W_6 cluster-based compound

    Get PDF
    Magnetic measurements of a three-dimensional (3D) molecular magnet built of Mn₉[W(CN)₈]₆ clusters have been carried out to study its static and dynamic properties. Measurements of ac susceptibility in the presence of static magnetic field revealed slow magnetic relaxations. It was found that for the 120 Hz wave frequency the optimal static field which maximizes the imaginary component of the ac susceptibility is about 500 Oe

    Using CdTe/ZnSe core/shell quantum dots to detect DNA and damage to DNA

    Get PDF
    CdTe/ZnSe core/shell quantum dot (QD), one of the strongest and most highly luminescent nanoparticles, was directly synthesized in an aqueous medium to study its individual interactions with important nucleobases (adenine, guanine, cytosine, and thymine) in detail. The results obtained from the optical analyses indicated that the interactions of the QDs with different nucleobases were different, which reflected in different fluorescent emission maxima and intensities. The difference in the interaction was found due to the different chemical behavior and different sizes of the formed nanoconjugates. An electrochemical study also confirmed that the purines and pyrimidines show different interactions with the core/shell QDs. Based on these phenomena, a novel QD-based method is developed to detect the presence of the DNA, damage to DNA, and mutation. The QDs were successfully applied very easily to detect any change in the sequence (mutation) of DNA. The QDs also showed their ability to detect DNAs directly from the extracts of human cancer (PC3) and normal (PNT1A) cells (detection limit of 500 pM of DNA), which indicates the possibilities to use this easy assay technique to confirm the presence of living organisms in extreme environments

    Photo-induced relaxation of magnetization in molecular magnet

    Get PDF
    The experimental study of photo-induced magnetization of hybrid molecular magnet containing cobalt(II) and tungsten(V) magnetic centers bridged by 4,40 -bpy and CN− is presented. The observed increase in magnetization rate is attributed to the defects due to inter-valence transfer between CoIIWV *) CoIIIWIV. The time evolution of magnetization is parameterized by the power law rather than exponential function

    Polynuclear complexes as multifunctional molecular materials

    No full text

    The thermodynamics of complex formation

    No full text
    corecore