11 research outputs found

    Long-acting formulations for the treatment of latent tuberculous infection: opportunities and challenges

    Get PDF
    Long-acting/extended-release drug formulations have proved very successful in diverse areas of medicine, including contraception, psychiatry and, most recently, human immunodeficiency virus (HIV) disease. Though challenging, application of this technology to anti-tuberculosis treatment could have substantial impact. The duration of treatment required for all forms of tuberculosis (TB) put existing regimens at risk of failure because of early discontinuations and treatment loss to follow-up. Long-acting injections, for example, administered every month, could improve patient adherence and treatment outcomes. We review the state of the science for potential long-acting formulations of existing tuberculosis drugs, and propose a target product profile for new formulations to treat latent tuberculous infection (LTBI). The physicochemical properties of some anti-tuberculosis drugs make them unsuitable for long-acting formulation, but there are promising candidates that have been identified through modeling and simulation, as well as other novel agents and formulations in preclinical testing. An efficacious long-acting treatment for LTBI, particularly for those co-infected with HIV, and if coupled with a biomarker to target those at highest risk for disease progression, would be an important tool to accelerate progress towards TB elimination

    Modelling the long-acting administration of anti-tuberculosis agents using PBPK: a proof of concept study

    No full text
    SETTING: Anti-tuberculosis formulations necessitate uninterrupted treatment to cure tuberculosis (TB), but are characterised by suboptimal adherence, which jeopardises therapeutic efficacy. Long-acting injectable (LAI) formulations or implants could address these associated issues. OBJECTIVE: niazid, rifapentine, bedaquiline and delamanid—in adults for treatment for latent tuberculous infection (LTBI). DESIGN: PBPK models were developed and qualified against available clinical data by integrating drug physicochemical properties and in vitro and population pharmacokinetic data into a mechanistic description of drug distribution. Combinations of optimal dose and release rates were simulated such that plasma concentrations were maintained over the epidemiological cut-off or minimum inhibitory concentration for the dosing interval. RESULTS: The PBPK model identified 1500 mg of delamanid and 250 mg of rifapentine as sufficient doses for monthly intramuscular administration, if a formulation or device can deliver the required release kinetics of 0.001–0.0025 h−1 and 0.0015–0.0025 h−1, respectively. Bedaquiline and isoniazid would require weekly to biweekly intramuscular dosing. CONCLUSION: We identified the theoretical doses and release rates of LAI anti-tuberculosis formulations. Such a strategy could ease the problem of suboptimal adherence provided the associated technological complexities for LTBI treatment are addressed

    Defining total-body AIDS-virus burden with implications for curative strategies

    No full text
    In the quest for a functional cure or the eradication of HIV infection, it is necessary to know the sizes of the reservoirs from which infection rebounds after treatment interruption. Thus, we quantified SIV and HIV tissue burdens in tissues of infected nonhuman primates and lymphoid tissue (LT) biopsies from infected humans. Before antiretroviral therapy (ART), LTs contained >98% of the SIV RNA+ and DNA+ cells. With ART, the numbers of virus (v) RNA+ cells substantially decreased but remained detectable, and their persistence was associated with relatively lower drug concentrations in LT than in peripheral blood. Prolonged ART also decreased the levels of SIV- and HIV-DNA+ cells, but the estimated size of the residual tissue burden of 108 vDNA+ cells potentially containing replication-competent proviruses, along with evidence of continuing virus production in LT despite ART, indicated two important sources for rebound following treatment interruption. The large sizes of these tissue reservoirs underscore challenges in developing 'HIV cure' strategies targeting multiple sources of virus production

    HIV-1 Integrase Inhibitors: A Comparative Review of Efficacy and Safety

    No full text
    corecore