530 research outputs found

    Improvements to model of projectile fragmentation

    Full text link
    In a recent paper [Phys. Rev. C 044612 (2011)] we proposed a model for calculating cross-sections of various reaction products which arise from disintegration of projectile like fragment resulting from heavy ion collisions at intermediate or higher energy. The model has three parts: (1) abrasion, (2) disintegration of the hot abraded projectile like fragment (PLF) into nucleons and primary composites using a model of equilibrium statistical mechanics and (3) possible evaporation of hot primary composites. It was assumed that the PLF resulting from abrasion has one temperature T. Data suggested that while just one value of T seemed adequate for most cross-sections calculations, it failed when dealing with very peripheral collisions. We have now introduced a variable T=T(b) where b is the impact parameter of the collision. We argue there are data which not only show that T must be a function of b but, in addition, also point to an approximate value of T for a given b. We propose a very simple formula: T(b)=D_0+D_1(A_s(b)/A_0) where A_s(b) is the mass of the abraded PLF and A_0 is the mass of the projectile; D_0 and D_1 are constants. Using this model we compute cross-sections for several collisions and compare with data.Comment: 27 pages, 16 figure

    Time-Dependent Hartree-Fock simulation of the expansion of abraded nuclei

    Full text link
    A recent interpretation of the caloric curve based on the expansion of the abraded spectator nucleus is re-analysed in the framework of the Time-Dependent Hartree-Fock (TDHF) evolution. It is shown that the TDHF dynamics is more complex than a single monopolar collective motion at moderate energy. The inclusion of other important collective degrees of freedom may lead to the dynamical creation of hollow structure. Then, low density regions could be locally reached after a long time by the creation of these exotic density profiles. In particular the systematic of the minimum density reached during the expansion (the so-called turning points) appears to be different.Comment: 30 Latex pages including 9 figure

    Microcanonical studies concerning the recent experimental evaluations of the nuclear caloric curve

    Get PDF
    The microcanonical multifragmentation model from [Al. H. Raduta and Ad. R. Raduta, Phys. Rev. C 55, 1344 (1997); 56, 2059 (1997); 59, 323 (1999)] is refined and improved by taking into account the experimental discrete levels for fragments with A6A \le 6 and by including the stage of sequential decay of the primary excited fragments. The caloric curve is reevaluated and the heat capacity at constant volume curve is represented as a function of excitation energy and temperature. The sequence of equilibrated sources formed in the reactions studied by the ALADIN group (197^{197}Au+197^{197}Au at 600, 800 and 1000 MeV/nucleon bombarding energy) is deduced by fitting simultaneously the model predicted mean multiplicity of intermediate mass fragments (MIMFM_{IMF}) and charge asymmetry of the two largest fragments (a12a_{12}) versus bound charge (ZboundZ_{bound}) on the corresponding experimental data. Calculated HeLi isotopic temperature curves as a function of the bound charge are compared with the experimentally deduced ones.Comment: 13 pages, 4 figure

    Liquid-gas phase transition in nuclei in the relativistic Thomas-Fermi theory

    Get PDF
    The equation of state (EOS) of finite nuclei is constructed in the relativistic Thomas-Fermi theory using the non-linear σωρ\sigma-\omega -\rho model. The caloric curves are calculated by confining the nuclei in the freeze-out volume taken to be a sphere of size about 4 to 8 times the normal nuclear volume. The results obtained from the relativistic theory are not significantly different from those obtained earlier in a non-relativistic framework. The nature of the EOS and the peaked structure of the specific heat CvC_v obtained from the caloric curves show clear signals of a liquid-gas phase transition in finite nuclei. The temperature evolution of the Gibbs potential and the entropy at constant pressure indicate that the characteristics of the transition are not too different from the first-order one.Comment: RevTex file(19 pages) and 12 psfiles for fugures. Physical Review C (in Press

    Temperatures of Exploding Nuclei

    Get PDF
    Breakup temperatures in central collisions of 197Au + 197Au at bombarding energies E/A = 50 to 200 MeV were determined with two methods. Isotope temperatures, deduced from double ratios of hydrogen, helium, and lithium isotopic yields, increase monotonically with bombarding energy from 5 MeV to 12 MeV, in qualitative agreement with a scenario of chemical freeze-out after adiabatic expansion. Excited-state temperatures, derived from yield ratios of states in 4He, 5Li, 6Li, and 8Be, are about 5 MeV, independent of the projectile energy, and seem to reflect the internal temperature of fragments at their final separation from the system. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.-qComment: 10 pages, RevTeX with 4 included figures; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    Breakup Density in Spectator Fragmentation

    Full text link
    Proton-proton correlations and correlations of protons, deuterons and tritons with alpha particles from spectator decays following 197Au + 197Au collisions at 1000 MeV per nucleon have been measured with two highly efficient detector hodoscopes. The constructed correlation functions, interpreted within the approximation of a simultaneous volume decay, indicate a moderate expansion and low breakup densities, similar to assumptions made in statistical multifragmentation models. PACS numbers: 25.70.Pq, 21.65.+f, 25.70.Mn, 25.75.GzComment: 11 pages, LaTeX with 3 included figures; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    Breakup Conditions of Projectile Spectators from Dynamical Observables

    Full text link
    Momenta and masses of heavy projectile fragments (Z >= 8), produced in collisions of 197Au with C, Al, Cu and Pb targets at E/A = 600 MeV, were determined with the ALADIN magnetic spectrometer at SIS. An analysis of kinematic correlations between the two and three heaviest projectile fragments in their rest frame was performed. The sensitivity of these correlations to the conditions at breakup was verified within the schematic SOS-model. The data were compared to calculations with statistical multifragmentation models and to classical three-body calculations. Classical trajectory calculations reproduce the dynamical observables. The deduced breakup parameters, however, differ considerably from those assumed in the statistical multifragmentation models which describe the charge correlations. If, on the other hand, the analysis of kinematic and charge correlations is performed for events with two and three heavy fragments produced by statistical multifragmentation codes, a good agreement with the data is found with the exception that the fluctuation widths of the intrinsic fragment energies are significantly underestimated. A new version of the multifragmentation code MCFRAG was therefore used to investigate the potential role of angular momentum at the breakup stage. If a mean angular momentum of 0.75\hbar/nucleon is added to the system, the energy fluctuations can be reproduced, but at the same time the charge partitions are modified and deviate from the data. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.Ld, 25.75.-qComment: 38 pages, RevTeX with 21 included figures; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    Thermal and Chemical Freeze-out in Spectator Fragmentation

    Full text link
    Isotope temperatures from double ratios of hydrogen, helium, lithium, beryllium, and carbon isotopic yields, and excited-state temperatures from yield ratios of particle-unstable resonances in 4He, 5Li, and 8Be, were determined for spectator fragmentation, following collisions of 197Au with targets ranging from C to Au at incident energies of 600 and 1000 MeV per nucleon. A deviation of the isotopic from the excited-state temperatures is observed which coincides with the transition from residue formation to multi-fragment production, suggesting a chemical freeze-out prior to thermal freeze-out in bulk disintegrations.Comment: 14 pages, 10 figures, submitted to Phys. Rev. C, small changes as suggested by the editors and referee

    Performance of HPGe Detectors in High Magnetic Fields

    Full text link
    A new generation of high-resolution hypernuclear gamma$-spectroscopy experiments with high-purity germanium detectors (HPGe) are presently designed at the FINUDA spectrometer at DAPhiNE, the Frascati phi-factory, and at PANDA, the antiproton proton hadron spectrometer at the future FAIR facility. Both, the FINUDA and PANDA spectrometers are built around the target region covering a large solid angle. To maximise the detection efficiency the HPGe detectors have to be located near the target, and therefore they have to be operated in strong magnetic fields B ~ 1 T. The performance of HPGe detectors in such an environment has not been well investigated so far. In the present work VEGA and EUROBALL Cluster HPGe detectors were tested in the field provided by the ALADiN magnet at GSI. No significant degradation of the energy resolution was found, and a change in the rise time distribution of the pulses from preamplifiers was observed. A correlation between rise time and pulse height was observed and is used to correct the measured energy, recovering the energy resolution almost completely. Moreover, no problems in the electronics due to the magnetic field were observed.Comment: submitted to Nucl. Instrum. Meth. Phys. Res. A, LaTeX, 19 pages, 9 figure

    Size Matters: Origin of Binomial Scaling in Nuclear Fragmentation Experiments

    Get PDF
    The relationship between measured transverse energy, total charge recovered in the detector, and size of the emitting system is investigated. Using only very simple assumptions, we are able to reproduce the observed binomial emission probabilities and their dependences on the transverse energy.Comment: 14 pages, including 4 figure
    corecore