1,484 research outputs found

    MiniZero: Comparative Analysis of AlphaZero and MuZero on Go, Othello, and Atari Games

    Full text link
    This paper presents MiniZero, a zero-knowledge learning framework that supports four state-of-the-art algorithms, including AlphaZero, MuZero, Gumbel AlphaZero, and Gumbel MuZero. While these algorithms have demonstrated super-human performance in many games, it remains unclear which among them is most suitable or efficient for specific tasks. Through MiniZero, we systematically evaluate the performance of each algorithm in two board games, 9x9 Go and 8x8 Othello, as well as 57 Atari games. For two board games, using more simulations generally results in higher performance. However, the choice of AlphaZero and MuZero may differ based on game properties. For Atari games, both MuZero and Gumbel MuZero are worth considering. Since each game has unique characteristics, different algorithms and simulations yield varying results. In addition, we introduce an approach, called progressive simulation, which progressively increases the simulation budget during training to allocate computation more efficiently. Our empirical results demonstrate that progressive simulation achieves significantly superior performance in two board games. By making our framework and trained models publicly available, this paper contributes a benchmark for future research on zero-knowledge learning algorithms, assisting researchers in algorithm selection and comparison against these zero-knowledge learning baselines. Our code and data are available at https://rlg.iis.sinica.edu.tw/papers/minizero.Comment: Submitted to IEEE Transactions on Games, under revie

    Cytomegalovirus enteritis in immunocompetent patients: Report of two cases diagnosed using single-balloon enteroscopy

    Get PDF
    SummaryCytomegalovirus (CMV) infection of the gastrointestinal tract involves mostly the colon and rectum and mainly develops in immunocompromised patients. CMV infection in the small intestines has rarely been reported in immunocompetent patients. We report two cases of CMV enteritis that developed in immunocompetent patients and involved the ileum and jejunum, respectively. Both of them were diagnosed with single-balloon enteroscopy (SBE) and further confirmed with histopathology. The first case is a 71-year-old woman with a presentation of obscure gastrointestinal bleeding and severe anemia. Neither esophagogastroduodenoscopy nor colonoscopy identified any active bleeding. SBE and biopsy disclosed multiple scattered ulcers in the distal ileum and histopathology confirmed CMV ileitis. The hemorrhage subsided after conservative medical treatment. The second case is a 59-year-old woman with a presentation of progressive abdominal pain. SBE showed diffuse irregularly-shaped ulcers located from the upper to middle jejunum, and CMV jejunitis was confirmed with endoscopic biopsy and histopathological examination. Antiviral therapy was prescribed and her abdominal pain improved gradually. We discuss the clinical manifestations and management strategies of CMV infection that develops in the small intestines of immunocompetent patients. In addition, we highlight the endoscopic characteristics of CMV enteritis and the clinical utilities of SBE in the evaluation of patients with suspected CMV infection of the small intestines

    Differential evolutionary conservation of motif modes in the yeast protein interaction network

    Get PDF
    BACKGROUND: The importance of a network motif (a recurring interconnected pattern of special topology which is over-represented in a biological network) lies in its position in the hierarchy between the protein molecule and the module in a protein-protein interaction network. Until now, however, the methods available have greatly restricted the scope of research. While they have focused on the analysis in the resolution of a motif topology, they have not been able to distinguish particular motifs of the same topology in a protein-protein interaction network. RESULTS: We have been able to assign the molecular function annotations of Gene Ontology to each protein in the protein-protein interactions of Saccharomyces cerevisiae. For various motif topologies, we have developed an algorithm, enabling us to unveil one million "motif modes", each of which features a unique topological combination of molecular functions. To our surprise, the conservation ratio, i.e., the extent of the evolutionary constraints upon the motif modes of the same motif topology, varies significantly, clearly indicative of distinct differences in the evolutionary constraints upon motifs of the same motif topology. Equally important, for all motif modes, we have found a power-law distribution of the motif counts on each motif mode. We postulate that motif modes may very well represent the evolutionary-conserved topological units of a protein interaction network. CONCLUSION: For the first time, the motifs of a protein interaction network have been investigated beyond the scope of motif topology. The motif modes determined in this study have not only enabled us to differentiate among different evolutionary constraints on motifs of the same topology but have also opened up new avenues through which protein interaction networks can be analyzed

    The Processing and Electrical Properties of Isotactic Polypropylene/Copper Nanowire Composites

    Get PDF
    Funding Information: The authors would like to thank MOST for financially supporting this work under grant No. MOST 110-2224-E-038-001. Publisher Copyright: © 2022 by the authors.Polypropylene (PP), a promising engineering thermoplastic, possesses the advantages of light weight, chemical resistance, and flexible processability, yet preserving insulative properties. For the rising demand for cost-effective electronic devices and system hardware protections, these applications require the proper conductive properties of PP, which can be easily modified. This study investigates the thermal and electrical properties of isotactic polypropylene/copper nanowires (i-PP/CuNWs). The CuNWs were harvested by chemical reduction of CuCl 2 using a reducing agent of glucose, capping agent of hexadecylamine (HDA), and surfactant of PEG-7 glyceryl cocoate. Their morphology, light absorbance, and solution homogeneity were investigated by SEM, UV-visible spectrophotometry, and optical microscopy. The averaged diameters and the length of the CuNWs were 66.4 ± 16.1 nm and 32.4 ± 11.8 µm, respectively. The estimated aspect ratio (L/D, length-to-diameter) was 488 ± 215 which can be recognized as 1-D nanomaterials. Conductive i-PP/CuNWs composites were prepared by solution blending using p-xylene, then melt blending. The thermal analysis and morphology of CuNWs were characterized by DSC, polarized optical microscopy (POM), and SEM, respectively. The melting temperature decreased, but the crystallization temperature increasing of i-PP/CuNWs composites were observed when increasing the content of CuNWs by the melt blending process. The WAXD data reveal the coexistence of Cu 2O and Cu in melt-blended i-PP/CuNWs composites. The fit of the electrical volume resistivity (ρ) with the modified power law equation: ρ = ρ o (V - Vc) -t based on the percolation theory was used to find the percolation concentration. A low percolation threshold value of 0.237 vol% and high critical exponent t of 2.96 for i-PP/CuNWs composites were obtained. The volume resistivity for i-PP/CuNWs composite was 1.57 × 10 7 Ω-cm at 1 vol% of CuNWs as a potential candidate for future conductive materials.publishersversionPeer reviewe

    RssAB Signaling Coordinates Early Development of Surface Multicellularity in Serratia marcescens

    Get PDF
    Bacteria can coordinate several multicellular behaviors in response to environmental changes. Among these, swarming and biofilm formation have attracted significant attention for their correlation with bacterial pathogenicity. However, little is known about when and where the signaling occurs to trigger either swarming or biofilm formation. We have previously identified an RssAB two-component system involved in the regulation of swarming motility and biofilm formation in Serratia marcescens. Here we monitored the RssAB signaling status within single cells by tracing the location of the translational fusion protein EGFP-RssB following development of swarming or biofilm formation. RssAB signaling is specifically activated before surface migration in swarming development and during the early stage of biofilm formation. The activation results in the release of RssB from its cognate inner membrane sensor kinase, RssA, to the cytoplasm where the downstream gene promoters are located. Such dynamic localization of RssB requires phosphorylation of this regulator. By revealing the temporal activation of RssAB signaling following development of surface multicellular behavior, our findings contribute to an improved understanding of how bacteria coordinate their lifestyle on a surface

    Increased functional connectivity of the posterior cingulate cortex with the lateral orbitofrontal cortex in depression

    Get PDF
    To analyze the functioning of the posterior cingulate cortex (PCC) in depression, we performed the first fully voxel-level resting state functional-connectivity neuroimaging analysis of depression of the PCC, with 336 patients with major depressive disorder and 350 controls. Voxels in the PCC had significantly increased functional connectivity with the lateral orbitofrontal cortex, a region implicated in non-reward and which is thereby implicated in depression. In patients receiving medication, the functional connectivity between the lateral orbitofrontal cortex and PCC was decreased back towards that in the controls. In the 350 controls, it was shown that the PCC has high functional connectivity with the parahippocampal regions which are involved in memory. The findings support the theory that the non-reward system in the lateral orbitofrontal cortex has increased effects on memory systems, which contribute to the rumination about sad memories and events in depression. These new findings provide evidence that a key target to ameliorate depression is the lateral orbitofrontal cortex

    Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression

    Get PDF
    The first brain-wide voxel-level resting state functional-connectivity neuroimaging analysis of depression is reported, with 421 patients with major depressive disorder and 488 controls. Resting state functional connectivity between different voxels reflects correlations of activity between those voxels and is a fundamental tool in helping to understand the brain regions with altered connectivity and function in depression. One major circuit with altered functional connectivity involved the medial orbitofrontal cortex BA 13, which is implicated in reward, and which had reduced functional connectivity in depression with memory systems in the parahippocampal gyrus and medial temporal lobe, especially involving the perirhinal cortex BA 36 and entorhinal cortex BA 28. The Hamilton Depression Rating Scale scores were correlated with weakened functional connectivity of the medial orbitofrontal cortex BA 13. Thus in depression there is decreased reward-related and memory system functional connectivity, and this is related to the depressed symptoms. The lateral orbitofrontal cortex BA 47/12, involved in non-reward and punishing events, did not have this reduced functional connectivity with memory systems. Second, the lateral orbitofrontal cortex BA 47/12 had increased functional connectivity with the precuneus, the angular gyrus, and the temporal visual cortex BA 21. This enhanced functional connectivity of the non-reward/punishment system (BA 47/12) with the precuneus (involved in the sense of self and agency), and the angular gyrus (involved in language) is thus related to the explicit affectively negative sense of the self, and of self-esteem, in depression. A comparison of the functional connectivity in 185 depressed patients not receiving medication and 182 patients receiving medication showed that the functional connectivity of the lateral orbitofrontal cortex BA 47/12 with these three brain areas was lower in the medicated than the unmedicated patients. This is consistent with the hypothesis that the increased functional connectivity of the lateral orbitofrontal cortex BA 47/12 is related to depression. Relating the changes in cortical connectivity to our understanding of the functions of different parts of the orbitofrontal cortex in emotion helps to provide new insight into the brain changes related to depression, which are considered in the Discussion
    corecore