84 research outputs found

    Machine Vision and Deep Learning Based Rubber Gasket Defect Detection

    Get PDF
    This study develops an automated optical inspection system for silicone rubber gaskets using traditional rule-based and deep learning detection techniques. The specific object of interest is a 5 mm × 10 mm × 5 mm  mobile device power supply connector gasket that provides protection against foreign body inclusion and water ingression. The proposed system can detect a total of five characteristic defects introduced during the mold-based manufacture process, which range from 10-100 μm. The deep learning detection strategies in this system employ convolutional neural networks (CNN) developed using the TensorFlow open-source library. Through both high dynamic range image capture and image generation techniques, accuracies of 100% and 97% are achieved for notch and residual glue defect predictions, respectively

    Comparison of secondary signs as shown by unenhanced helical computed tomography in patients with uric acid or calcium ureteral stones

    Get PDF
    AbstractUnenhanced helical computed tomography (UHCT) has evolved into a well-accepted diagnostic method in patients with suspected ureterolithiasis. UHCT not only shows stones within the lumen of the ureter, it also permits evaluation of the secondary signs associated with ureteral obstruction from stones. However, there we could find no data on how secondary signs might differ in relation to different compositions of ureteral stones. In this study, we compared the degree of secondary signs revealed by UHCT in uric acid stone formers and in patients forming calcium stones. We enrolled 117 patients with ureteral stones who underwent UHCT examination and Fourier transform infra-red analysis of stone samples. Clinical data were collected as follows: age, sex, estimated glomerular filtration rate (eGFR), urine pH, and radiological data on secondary signs apparent on UHCT. The uric acid stone formers had significantly lower urine pH and eGFR in comparison to calcium stone formers, and on UHCT they also had a higher percentage of the secondary signs, including rim sign (78.9% vs. 60.2%), hydroureter (94.7% vs. 89.8%), perirenal stranding (84.2% vs. 59.2%) and kidney density difference (73.7% vs. 50.0%). The radiological difference was statistically significant for perirenal stranding (p=0.041). In conclusion, we found that UHCT scanning reveals secondary signs to be more frequent in patients with uric acid ureteral stones than in patients with calcium stones, a tendency that might result from an acidic urine environment

    The Processing and Electrical Properties of Isotactic Polypropylene/Copper Nanowire Composites

    Get PDF
    Funding Information: The authors would like to thank MOST for financially supporting this work under grant No. MOST 110-2224-E-038-001. Publisher Copyright: © 2022 by the authors.Polypropylene (PP), a promising engineering thermoplastic, possesses the advantages of light weight, chemical resistance, and flexible processability, yet preserving insulative properties. For the rising demand for cost-effective electronic devices and system hardware protections, these applications require the proper conductive properties of PP, which can be easily modified. This study investigates the thermal and electrical properties of isotactic polypropylene/copper nanowires (i-PP/CuNWs). The CuNWs were harvested by chemical reduction of CuCl 2 using a reducing agent of glucose, capping agent of hexadecylamine (HDA), and surfactant of PEG-7 glyceryl cocoate. Their morphology, light absorbance, and solution homogeneity were investigated by SEM, UV-visible spectrophotometry, and optical microscopy. The averaged diameters and the length of the CuNWs were 66.4 ± 16.1 nm and 32.4 ± 11.8 µm, respectively. The estimated aspect ratio (L/D, length-to-diameter) was 488 ± 215 which can be recognized as 1-D nanomaterials. Conductive i-PP/CuNWs composites were prepared by solution blending using p-xylene, then melt blending. The thermal analysis and morphology of CuNWs were characterized by DSC, polarized optical microscopy (POM), and SEM, respectively. The melting temperature decreased, but the crystallization temperature increasing of i-PP/CuNWs composites were observed when increasing the content of CuNWs by the melt blending process. The WAXD data reveal the coexistence of Cu 2O and Cu in melt-blended i-PP/CuNWs composites. The fit of the electrical volume resistivity (ρ) with the modified power law equation: ρ = ρ o (V - Vc) -t based on the percolation theory was used to find the percolation concentration. A low percolation threshold value of 0.237 vol% and high critical exponent t of 2.96 for i-PP/CuNWs composites were obtained. The volume resistivity for i-PP/CuNWs composite was 1.57 × 10 7 Ω-cm at 1 vol% of CuNWs as a potential candidate for future conductive materials.publishersversionPeer reviewe

    Potassium {4-[(3S,6S,9S)-3,6-dibenzyl-9-isopropyl-4,7,10-trioxo-11–oxa-2,5,8-triazadodecyl]phenyl}trifluoroborate

    Get PDF
    [[abstract]]The reported compound 4 was synthesized and fully characterized by 1H NMR, 13C NMR, 11B NMR, 19F NMR, and high resolution mass spectrometry.[[booktype]]電子版[[countrycodes]]CH

    Segmental correction of adolescent idiopathic scoliosis by all-screw fixation method in adolescents and young adults. minimum 5 years follow-up with SF-36 questionnaire

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In our institution, the fixation technique in treating idiopathic scoliosis was shifted from hybrid fixation to the all-screw method beginning in 2000. We conducted this study to assess the intermediate -term outcome of all-screw method in treating adolescent idiopathic scoliosis (AIS).</p> <p>Methods</p> <p>Forty-nine consecutive patients were retrospectively included with minimum of 5-year follow-up (mean, 6.1; range, 5.1-7.3 years). The average age of surgery was 18.5 ± 5.0 years. We assessed radiographic measurements at preoperative (Preop), postoperative (PO) and final follow-up (FFU) period. Curve correction rate, correction loss rate, complications, accuracy of pedicle screws and SF-36 scores were analyzed.</p> <p>Results</p> <p>The average major curve was corrected from 58.0 ± 13.0° Preop to 16.0 ± 9.0° PO(<it>p </it>< 0.0001), and increased to 18.4 ± 8.6°(<it>p </it>= 0.12) FFU. This revealed a 72.7% correction rate and a correction loss of 2.4° (3.92%). The thoracic kyphosis decreased little at FFU (22 ± 12° to 20 ± 6°, (<it>p </it>= 0.25)). Apical vertebral rotation decreased from 2.1 ± 0.8 PreOP to 0.8 ± 0.8 at FFU (Nash-Moe grading, <it>p </it>< 0.01). Among total 831 pedicle screws, 56 (6.7%) were found to be malpositioned. Compared with 2069 age-matched Taiwanese, SF-36 scores showed inferior result in 2 variables: physical function and role physical.</p> <p>Conclusion</p> <p>Follow-up more than 5 years, the authors suggest that all-screw method is an efficient and safe method.</p

    HypertenGene: extracting key hypertension genes from biomedical literature with position and automatically-generated template features

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genetic factors leading to hypertension have been extensively studied, and large numbers of research papers have been published on the subject. One of hypertension researchers' primary research tasks is to locate key hypertension-related genes in abstracts. However, gathering such information with existing tools is not easy: (1) Searching for articles often returns far too many hits to browse through. (2) The search results do not highlight the hypertension-related genes discovered in the abstract. (3) Even though some text mining services mark up gene names in the abstract, the key genes investigated in a paper are still not distinguished from other genes. To facilitate the information gathering process for hypertension researchers, one solution would be to extract the key hypertension-related genes in each abstract. Three major tasks are involved in the construction of this system: (1) gene and hypertension named entity recognition, (2) section categorization, and (3) gene-hypertension relation extraction.</p> <p>Results</p> <p>We first compare the retrieval performance achieved by individually adding template features and position features to the baseline system. Then, the combination of both is examined. We found that using position features can almost double the original AUC score (0.8140vs.0.4936) of the baseline system. However, adding template features only results in marginal improvement (0.0197). Including both improves AUC to 0.8184, indicating that these two sets of features are complementary, and do not have overlapping effects. We then examine the performance in a different domain--diabetes, and the result shows a satisfactory AUC of 0.83.</p> <p>Conclusion</p> <p>Our approach successfully exploits template features to recognize true hypertension-related gene mentions and position features to distinguish key genes from other related genes. Templates are automatically generated and checked by biologists to minimize labor costs. Our approach integrates the advantages of machine learning models and pattern matching. To the best of our knowledge, this the first systematic study of extracting hypertension-related genes and the first attempt to create a hypertension-gene relation corpus based on the GAD database. Furthermore, our paper proposes and tests novel features for extracting key hypertension genes, such as relative position, section, and template features, which could also be applied to key-gene extraction for other diseases.</p

    ALMaQUEST. IV. The ALMA-MaNGA QUEnching and STar Formation (ALMaQUEST) Survey

    Get PDF
    The ALMaQUEST (ALMA-MaNGA QUEnching and STar formation) survey is a program with spatially resolved 12CO(1-0) measurements obtained with the Atacama Large Millimeter Array (ALMA) for 46 galaxies selected from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) DR15 optical integral-field spectroscopic survey. The aim of the ALMaQUEST survey is to investigate the dependence of star formation activity on the cold molecular gas content at kiloparsec scales in nearby galaxies. The sample consists of galaxies spanning a wide range in specific star formation rate (sSFR), including starburst (SB), main-sequence (MS), and green valley (GV) galaxies. In this paper, we present the sample selection and characteristics of the ALMA observations and showcase some of the key results enabled by the combination of spatially matched stellar populations and gas measurements. Considering the global (aperture-matched) stellar mass, molecular gas mass, and star formation rate of the sample, we find that the sSFR depends on both the star formation efficiency (SFE) and the molecular gas fraction ( fH2{f}_{{{\rm{H}}}_{2}} ), although the correlation with the latter is slightly weaker. Furthermore, the dependence of sSFR on the molecular gas content (SFE or fH2{f}_{{{\rm{H}}}_{2}} ) is stronger than that on either the atomic gas fraction or the molecular-to-atomic gas fraction, albeit with the small HI sample size. On kiloparsec scales, the variations in both SFE and fH2{f}_{{{\rm{H}}}_{2}} within individual galaxies can be as large as 1-2 dex, thereby demonstrating that the availability of spatially resolved observations is essential to understand the details of both star formation and quenching processes

    Comparison between propofol and alfaxalone anesthesia for the evaluation of laryngeal function in healthy dogs utilizing computerized software.

    No full text
    Laryngeal paralysis is a well-documented cause of upper respiratory tract obstruction in canines. Diagnosis of laryngeal paralysis is usually made by visual evaluation of laryngeal motion whilst patients are under a light-plane of anesthesia. However, in human studies of laryngeal function evaluation, it has been shown that subjective scoring can lead to significant interobserver variance, which may cause false diagnosis. In this study, we propose to introduce a more objective method of assessing laryngeal function using GlotAnTools and Tracker software to directly measure laryngeal motion in anaesthetized patients. Additionally, two anesthetic agents, alfaxalone and propofol, were compared in this study to assess their relative effect on laryngeal motion and thus their suitability for use in this diagnostic process. This study was a two-stage, cross-over, 1:1 randomization, with two active treatment arms. Ten beagles (10-18 months, five males and five females) were exposed to both anesthetic agents and laryngeal motion was recorded using videoendoscopy. GlotAnTools and Tracker software were applied to the recorded images to measure glottal gap area (A) and length (L). A normalized measure of laryngeal function-computed as A/L-was created, representing the "elongatedness" of the rima glottidis. The glottal gap area was significantly reduced in dogs receiving alfaxalone. This study objectively establishes that alfaxalone impacted laryngeal motion significantly more than propofol and confirms the capability of these computational methods to detect differences in laryngeal motion
    corecore