2,986 research outputs found
Rhythm-Flexible Voice Conversion without Parallel Data Using Cycle-GAN over Phoneme Posteriorgram Sequences
Speaking rate refers to the average number of phonemes within some unit time,
while the rhythmic patterns refer to duration distributions for realizations of
different phonemes within different phonetic structures. Both are key
components of prosody in speech, which is different for different speakers.
Models like cycle-consistent adversarial network (Cycle-GAN) and variational
auto-encoder (VAE) have been successfully applied to voice conversion tasks
without parallel data. However, due to the neural network architectures and
feature vectors chosen for these approaches, the length of the predicted
utterance has to be fixed to that of the input utterance, which limits the
flexibility in mimicking the speaking rates and rhythmic patterns for the
target speaker. On the other hand, sequence-to-sequence learning model was used
to remove the above length constraint, but parallel training data are needed.
In this paper, we propose an approach utilizing sequence-to-sequence model
trained with unsupervised Cycle-GAN to perform the transformation between the
phoneme posteriorgram sequences for different speakers. In this way, the length
constraint mentioned above is removed to offer rhythm-flexible voice conversion
without requiring parallel data. Preliminary evaluation on two datasets showed
very encouraging results.Comment: 8 pages, 6 figures, Submitted to SLT 201
Construction and verification of digital electronics contestants' indicators for vocational education in Taiwan
No AbstractKeywords: competency indicator, digital electronics, important-performance analysis, skill competitio
Potassium {4-[(3S,6S,9S)-3,6-dibenzyl-9-isopropyl-4,7,10-trioxo-11–oxa-2,5,8-triazadodecyl]phenyl}trifluoroborate
[[abstract]]The reported compound 4 was synthesized and fully characterized by 1H NMR, 13C NMR, 11B NMR, 19F NMR, and high resolution mass spectrometry.[[booktype]]電子版[[countrycodes]]CH
Factors Affecting Aluminum Dissolve from Acidified Water Purification Sludge
Recovering resources from water purification sludge (WPS) have been gradually stipulated in environmental protection laws and regulations in many nations. Hence, reusing the WPS is becoming an important topic, and recovering alum from WPS is one of the many practical alternatives. Most previous research efforts have been conducted on studying the amphoteric characteristic of aluminum hydroxide for investigating the optimum pH range to dissolve the Al(III) species from WPS, but it has been lack of reaction kinetics or mechanisms related discussion. Therefore, in this investigation, water purification sludge (WPS) solution was broken by ultrasound to make particle size of reactants smaller, specific surface area larger. According to the reaction kinetics, these phenomena let the dissolved aluminum salt quantity increased and the reaction rate go faster
The Yeast Nucleosome Atlas (YNA) database: an integrative gene mining platform for studying chromatin structure and its regulation in yeast
BACKGROUND: Histone modification and remodeling play crucial roles in regulating gene transcription. These post-translational modifications of histones function in a combinatorial fashion and can be recognized by specific histone-binding proteins, thus regulating gene transcription. Therefore, understanding the combinatorial patterns of the histone code is vital to understanding the associated biological processes. However, most of the datasets regarding histone modification and chromatin regulation are scattered across various studies, and no comprehensive search and query tool has yet been made available to retrieve genes bearing specific histone modification patterns and regulatory proteins. DESCRIPTION: For this reason, we developed the Yeast Nucleosome Atlas database, or the YNA database, which integrates the available experimental data on nucleosome occupancy, histone modifications, the binding occupancy of regulatory proteins, and gene expression data, and provides the genome-wide gene miner to retrieve genes with a specific combination of these chromatin-related datasets. Moreover, the biological significance analyzer, which analyzes the enrichments of histone modifications, binding occupancy, transcription rate, and functionality of the retrieved genes, was constructed to help researchers to gain insight into the correlation among chromatin regulation and transcription. CONCLUSIONS: Compared to previously established genome browsing databases, YNA provides a powerful gene mining and retrieval interface, and is an investigation tool that can assist users to generate testable hypotheses for studying chromatin regulation during transcription. YNA is available online at http://cosbi3.ee.ncku.edu.tw/yna/
An All Deep System for Badminton Game Analysis
The CoachAI Badminton 2023 Track1 initiative aim to automatically detect
events within badminton match videos. Detecting small objects, especially the
shuttlecock, is of quite importance and demands high precision within the
challenge. Such detection is crucial for tasks like hit count, hitting time,
and hitting location. However, even after revising the well-regarded
shuttlecock detecting model, TrackNet, our object detection models still fall
short of the desired accuracy. To address this issue, we've implemented various
deep learning methods to tackle the problems arising from noisy detectied data,
leveraging diverse data types to improve precision. In this report, we detail
the detection model modifications we've made and our approach to the 11 tasks.
Notably, our system garnered a score of 0.78 out of 1.0 in the challenge.Comment: Golden Award for IJCAI CoachAI Challenge 2023: Team NTNUEE AIoTLa
In Situ Confocal Raman Mapping Study of a Single Ti-Assisted ZnO Nanowire
In this work, we succeeded in preparing in-plane zinc oxide nanowires using a Ti-grid assisted by the chemical vapor deposition method. Optical spatial mapping of the Confocal Raman spectra was used to investigate the phonon and geometric properties of a single ZnO nanowire. The local optical results reveal a red shift in the non-polar E2 high frequency mode and width broadening along the growth direction, reflecting quantum-confinement in the radial direction
- …
